• Title/Summary/Keyword: Non-mixture

Search Result 1,052, Processing Time 0.026 seconds

Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel (말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성)

  • Lee, Mi-Hwa;Lee, Young-Chul;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

Adsorption Characteristics of Multi-component VOCs Including Poorly Adsorbable Chemicals on Activated Carbonaceous Adsorbents (비흡착성 화합물을 포함하는 다성분 VOCs의 탄소흡착제 흡착특성)

  • Woo, Kwang Jae;Kim, Sang Do;Lee, Si Hyun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.277-285
    • /
    • 2007
  • The adsorption characteristics of multi-component solvent vapors including poorly-adsorbable chemicals such as toluene-xylene-MEK and toluene-MEK-IPA on the activated carbonaceous adsorbents were investigated in a stainless steel fixed bed of 10.2 cm ID and 50 cm in height in order to identify those carbons for eliminating and recovering solvent vapors from industrial emission sources. The used activated carbonaceous adsorbents were pelletized commercial activated carbons and activated carbon fiber. Breakthrough curves and adsorption capacity at atmospheric pressures were obtained. It has been found that non-polar and larger molecules have been adsorbed better than polar and smaller molecules. In special, alcohols and ketones were poorly adsorbed caused by competitive adsorbability in multi-component mixture system. However, it could be overcome by profitable employment of organization of cooperative system which was composed of different porosity activated carbonaceous adsorbents appropriately.

Performance Evaluation of the Advanced Physical Layer Modulation Techniques for Cable Modem Upstream Channel (케이블모뎀 상향 채널을 위한 Advanced PHY 변조 기술 성능 평가)

  • Cho, Byung-Hak;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.1-11
    • /
    • 2005
  • S-CDMA is the advanced physical layer modulation techniques of DOCSIS 2.0 specification. S-DMT is another challenging modulation technique for cable modem upstream channel due to the intrinsic robustness for fading and impulse noise. The BER performance of S-DMT and S-CDMA over the mixed channel model of AWGN and impulse noise were evaluated in comparison with TDMA. The mathematical BER derivation and the comparison of those three types of technique were performed based on the ${\varepsilon}-mixture$ non-Gaussian impulse noise model. The results of simulation show good compliance with those of analytic BER derivation. By the results of comparisons, it was verified that the performance of S-CDMA and S-DMT is almost the same, but the performance of S-DMT is far superior to that of TDMA at typical BER range of the practical data communications.

A Study on Free Indirect Discourse Emerged in the (영화 <여자, 정혜>에 연출된 자유간접화법의 의미 분석)

  • Kim, Jong-Wan
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.60-68
    • /
    • 2017
  • Through this thesis, I wanted to understand the form of free indirect discourse of modern films. To this end, I first explored the notion of the polyphonie as a mixture of the speaker and the character' voice in order to establish a concept related to free indirect discourse. However, I could not overlook the differences in the form of novels and movies to apply the following theory to films. Based on the concept of narrative distance, I sought to explore the possibility of free indirect discourse from the dual position of the camera. Next, I introduced the concept of free indirect discourse in the film by introducing the concept of Time in G. Deleuze' CinemaII. In other words, the time from Deleuze is the past and the present cycle, and he sees the Time circulating like the Non-Euclidean space. I wanted to understand the form of free indirect discourse in films by analyzing the concept of Time as an analysis of the movie .

Vaporization of Hydrocarbon Fuel Droplet in Supercritical Environments (아임계 및 초임계 탄화수소 연료 액적의 기화 특성 연구)

  • Lee,Gyeong-Jae;Lee,Bong-Su;Kim,Jong-Hyeon;Gu,Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.85-93
    • /
    • 2003
  • Droplet vaporization at various ambient pressures is studied numerically by formulating one dimensional evaporation model in the mixture of hydrocarbon fuel and air. The ambient pressure ranged from atmospheric conditions to the supercritical conditions. The modified Soave-Redlich-Kwong state equation is used to account for the real gas effects in the high pressure condition. Non-ideal thermodynamic and transport properties at near critical and supercritical conditions are considered. Some computational results are compared with Sato's experimental data for the validation of calculations. The comparison between predictions and experiments showed quite a good agreement. The droplet lifetime increases with increasing pressure at temperature lower than the critical temperature, however, it decreases with increasing pressure at temperature higher than the critical temperature. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the temperature and the pressure go up.

Insulation Characteristics of $SF_6/N_2$ and $SF_6/N_2/Co_2$ Mixture Gases in Non-Uniform Fields (불평등전계하에서의 $SF_6/N_2$$SF_6/N_2/Co_2$ 혼합가스의 절연 특성)

  • Park, Sang-Hyun;Kim, Sung-Tae;Heo, Guk-Bum;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.470-471
    • /
    • 2007
  • 환경친화적 가스절연기기의 개발을 위해 $SF_6/N_2$와 완충기체와의 혼합가스에 관한 연구가 주목받고 있다. 본 논문에서는 GIS 설계에 있어 기초가 되는 준평등전계 하에서의 가스 절연특성을 검토하기 위하여 순 SF6, N2, CO2 이들이 혼합된 2종 및 3종 혼합가스에 대해 가스압력 0.6MPa 이하에서 상용교류전압을 인가하여 실험에 의해 그 부분방전특성과 절연특성을 조사하였다. 특히 실용 전력기기의 경우 금속이물질 등의 혼입에 의해 기기 내에서 불평동전계가 형성되어 부분방전을 거쳐 절연파괴에 이르는 가능성이 있으므로 본 연구에서는 불평등전계하의 절연특성을 검토하였다. 실험 결과 SF6/N2 2종 혼합 가스에 비하여 SF6/N2/CO2 3종 혼합 가스의 교류 절연 특성이 향상됨을 확인하였으며 이상의 결과로부터 교류 절연 파괴 특성만을 고려하였을 경우 SF6/N2/CO2 3종 혼합 가스가 SF6 대체 혼합가스로써 타당성을 확인하였다.

  • PDF

The study of plasma source ion implantation process for ultra shallow junctions (Ulra shallow Junctions을 위한 플라즈마 이온주입 공정 연구)

  • Lee, S.W.;Jeong, J.Y.;Park, C.S.;Hwang, I.W.;Kim, J.H.;Ji, J.Y.;Choi, J.Y.;Lee, Y.J.;Han, S.H.;Kim, K.M.;Lee, W.J.;Rha, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.111-111
    • /
    • 2007
  • Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.

  • PDF

An Analysis on the Properties of Concrete Used as the Mixture Material with Carbon Black (카본블랙을 혼화재료로 사용한 콘크리트의 특성 분석)

  • Ryu, Hyun-Gi;Kwon, Yong-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.59-66
    • /
    • 2010
  • The purpose of this study is to determine the possibilities of blending carbon black, which is known for its permeability as well as its strong heat and fire resistance, into concrete, in a manner that reinforces its strengths mentioned above. Experiments show that in non-solidified, fresh-mixed concrete, the addition of carbon black effectively reduced slump level and air content due to its absorptiveness and minute particle size. It also showed good results in terms of coagulation time, penetration resistance and bleeding level. In solid concrete, it showed better strength than plain concrete. Due to the pozzolanic reaction, its strength became more pronounced over time. At approximately 850 degrees Celsius, the heat and fire resistance level increased in parallel to the level of chemical substitution (by carbon black). Drying shrinkage level appeared to be optimal, and environmental assessment test results related to CO, CO2 and formaldehyde also scored better than plain concrete. In summary, with the appropriate use of AE water-reducing agents, carbon black can prove to be a strong candidate as an ingredient for industry-grade concrete.

Evaluation of the Effect of Aggregate Structure on Rutting Performance of Asphalt Pavement (아스팔트 포장의 소성변형에 대한 골재 구조의 영향 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-147
    • /
    • 2007
  • Segregation in asphalt pavements occurs as a result of the non-uniform distribution of coarse and fine aggregates and causes premature distresses, such as cracking, raveling, and stripping. The effect of segregation on rutting, however, has not been clearly identified. Experimental and analytical work performed in this study indicates that rutting performance is affected by segregation of mixtures. However, the aggregate structure of mixtures appears to be a more critical factor that determines the rutting performance, rather than the level of segregation. Based on the field mixtures evaluated, an increase of coarse aggregate volume in an asphalt mixture is an important factor that results in good rutting performance. This effect holds true for mixtures with lower levels of air voids, but for mixtures with higher levels of air voids, the air voids effect becomes dominant, resulting in a reduction in rutting performance. An air void content of 10% appears to be a threshold that determines the rutting performance of Superpave mixtures. Once the air void content exceeds 10%, the rutting performance of Superpave mixtures decreases significantly, despite the coarse aggregate volume.

  • PDF

Yield Decrease of Tall Fescue ( Festuca arundinacea Schreb. ) by Pathogenic Fungi and its Control by Antagonistic Bacteria (병원성사상균에 의한 Tall Fescue ( Festuca arundinacea Schreb. ) 의 수량 손실과 길항 미생물에 의한 그 방제)

  • Choi, Ki-Chun;Song, Chae-Eun;Lee, Joung-Kyong;Kim, Jong-Hyun;Rhee, Young-Hwan;Youn, Chang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • This study was conducted to investigate the effects of antagonistic bacteria and pathogenic fungi on the growth of tall fescue(Festuca arundinacea Schreb.) in continuous cropping soil(CCS) and non-continuous cropping soil(NCCS). Tall fescue was established by seeding into pots of 11 cm in diameter and 9 cm in depth containing 1 : 1 mixture of soil and vermiculite, and cultivated at pots with antagonistic bacteria and pathogenic fungi in a vinyl house. The bacteria used in this study were Bacillus subtilis and hsants. B. subtilis was isolated and identified kern forage rhizosphere soil and fusants were isolated through cell hsion from B. subtilis and B. thwingiensis. B. subtilis was named as B. subtilis 101 and hsants were named as F-3, F-7 and F-8. In dark culture experiment, tall fescue inoculated with the antagonistic bacteria lived longer than that of control in both CCS and NCCS. However, tall fescue of CCS lived shorter than that of NCCS. Dry weight of tall fescue inoculated with the antagonistic bacteria was higher than that of tall fescue inoculated with pathogenic hngi in both CCS and NCCS(P< 0.05), and the antagonistic bacteria showed positive effects on the growth of tall fescue. However, Dry weight of tall fescue was decreased by the inoculation of the pathogenic b g i in both CCS and NCCS(P< 0.05).

  • PDF