• Title/Summary/Keyword: Non-magnetic steel

Search Result 98, Processing Time 0.023 seconds

Development of Crack Examination Algorithm Using the Linearly Integrated Hall Sensor Array (선형 홀 센서 배열을 사용한 결함 검사 알고리즘 개발)

  • Kim, Jae-Jun;Kim, Byoung-Soo;Lee, Jin-Yi;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.30-36
    • /
    • 2010
  • Previous researches show that linearly integrated Hall sensor arrays (LIHaS) can detect cracks in the steel structure fast and effectively This paper proposes an algorithm that estimates the size and shape of cracks for the developed LIHaS. In most nondestructive testing (NDT), just crack existence and location are obtained by processing 1-dimensional data from the sensor that scans the object with relative speed in single direction. The proposed method is composed with two steps. The first step is constructing 2-dimensionally mapped data space by combining the converted position data from the time-based scan data with the position information of sensor arrays those are placed in the vertical direction to the scan direction. The second step is applying designed Laplacian filter and smoothing filter to estimate the size and shape of cracks. The experimental results of express train wheels show that the proposed algorithm is not only more reliable and accurate to detecting cracks but also effective to estimate the size and shape of cracks.

A case study on the failure diagnosis of plant machinery system by implementing on-line wear monitoring (실시간 마모량 측정을 통한 대형 기계윤활시스템의 파손발생 진단사례)

  • 윤의성;장래혁;공호성;한흥구;권오관;송재수;김재덕;엄형섭
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.321-327
    • /
    • 1998
  • This paper presented a case study on the application of on-line wear monitoring technique to a high duty air-turbo-compressor system. Main objects monitored were a gear unit and metal bearings, both shown frequent troubles due to the severe operation conditions at heavy dynamic load. The air-turbo-compressor system needs secure condition monitoring because it is one of the main utilities in steel making industry. Temperature and vibration characteristics have been mainly on-line monitored in this system for a predictive maintenance; however, it has been shown that they are not fairly good enough to give an early warning prior to the machine failure. In this work, an on-line Opto Magnetic Detector(OMD) was implemented for an on-line wear monitoring, which quantitatively measured the contamination level of both ferrous and non-ferrous wear particles by detecting the change in optical density of used oil. Results showed that the application of on-line OMD system was satisfactory in diagnosis of the machine system.

  • PDF

Fire resistance evaluation of fiber-reinforced cement composites using cellulose nanocrystals

  • Lee, Hyung-Joo;Kim, Seung-Ki;Lee, Heon-Seok;Kang, Yong-Hak;Kim, Woosuk;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.311-320
    • /
    • 2019
  • In this study, the effect of cellulose nanocrystals (CNCs) on the fire resistance properties of fiber-reinforced cement composites was investigated. The main variables were CNCs content (0.4, 0.8 and 1.2vol.% compared with cement), steel fiber ratio, and exposure temperature (100, 200, 400, 600 and 800℃). The fire resistance properties, i.e., residual compressive strength, flexural strength, and porosity, were evaluated in relation with the exposure temperature of the specimens. The CNCs suspensions were prepared to composited dispersion method of magnetic stirring and ultra-sonication. CNCs are effective for increasing the compressive strength at high temperatures but CNCs do not seem to have a significant effect on flexural reinforcement. Porosity test result showed CNCs reduce the non-hydration area inside the cement and promote hydration.

Spectrum analysis of acoustic Barkhausen noise on neutron irradiated material

  • Sim Cheul-Muu;Park Seung-Sik;Park Duck-Gum;Lee Chang-Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.231-234
    • /
    • 2000
  • In relation to a non-destructive evaluation of irradiation damage of micro-structure of interstitial, void and dislocation, the changes in the hysteresis loop and Barkhausen noise amplitude and the harmonics frequency due to neutron irradiation were measured and evaluated. The Mn-Mo-Ni low alloy steel of reactor pressure vessel was irradiated to a neutron fluence of $2.3\times10^{19}n/cm^2$ $(E\ge1MeV)$ at $288^{\circ}C.$The saturation magnetization of neutron irradiated metal did not change. Neutron irradiation caused the coercivity to increase, whereas susceptibility to decrease. The amplitude of Barkhausen noise parameters associated with the domain wall motion were decreased by neutron irradiation. The spectrum of Barkhausen noise was analyzed with an applied frequency of 4Hz and 8Hz, and a sampling time of 50 $\mu$ sec and 20 $\mu$ sec. The harmonic frequency of Joule effect shows 4Hz, 8Hz, 12Hz and 16Hz reflected from an unirradiated specimen. On the contrary, the harmonic frequency disappeared for the irradiated specimen. Harmonic frequency of induced voltage of sinusoidal magnetic field And Spectrum of Barkhausen noise on material is determined.

  • PDF

Detection of Iron Phases Presents in Archaeological Artifacts by Raman Spectroscopy

  • Barbosa, A.L.;Jimenez, C.;Mosquera, J.A.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.

Non-thermal Plasma Process for simultaneous removal of SO2/NOx from a Sintering Plant of Steel Works

  • Nam, Chang-Mo;Mok, Young-Sun;Kwon, Gi-Hong;Suh, You-Duck;Cho, Byeung-Rak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • For the simultaneous removal of $SO_2$/NOx from an iron-ore sintering plant, industrial plasma experiments have been conducted with a flue gas flow rate of $5,000Nm^3/hr$. The maximum 40kW power using the magnetic pulse compression (MPC) system generates a peak value of 100-150kV pulse voltage with its risetime of 200nsec and full width at half maximum (FWHM) of 500nsec, and with a frequency <300Hz. The plasma reactor module adopts a wire-plate structure with a gap of 200-400mm ID between plates. Initial concentrations of $SO_2$ and NOx were around 100-150ppm, respectively in the presence of 15% $O_2$ and <10% $H_2O$. Various reaction parameters such as specific energy ($Whr/Nm^3$), $NH_3$ injection with corona discharge, flow rate and injection of hydrocarbons were investigated for $SO_2$/NOx removal characteristics. About 90/65% of $SO_2$/NOx were simultaneously removed with a specific energy of $3.0Whr/Nm^3$ when both $NH_3$ and hydrocarbons were injected. Practical implications that the pilot-scale plasma results provide are further discussed.

  • PDF

Prediction of Tensile Strength of High-Nitrogen 18Mn-18Cr Austenitic Steels for Generator Retaining Ring (발전기용 오스테나이트계 18Mn-18Cr 고질소강의 제조와 인장강도 예측)

  • Hwang, Byoungchul;Lee, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.483-488
    • /
    • 2013
  • Over the past few decades, high-nitrogen austenitic steels have steadily received greater attention since they provide a unique combination of high strength and ductility, good corrosion resistance, and non-magnetic properties. Recently, highnitrogen 18Mn-18Cr austenitic steels with enhanced strength have been developed and widely used for generator retaining rings in order to prevent the copper wiring from being displaced by the centrifugal forces occurring during high-speed rotation. The high-nitrogen austenitic steels for generator retaining ring should be expanded at room temperature and then stress relief annealed at around $400^{\circ}C$ to achieve the required mechanical properties. In this study, four kinds of high-nitrogen 18Mn-18Cr austenitic steels with different nitrogen content were fabricated by using a pressurized vacuum induction melting furnace, and then the effects of nitrogen content, cold working, and stress relieving on tensile properties were investigated. The yield and tensile strengths increased proportionally with increasing nitrogen content and cold working, and they further increased after stress relieving treatment. Based on these results, a semi-empirical equation was proposed to predict the tensile strength of highnitrogen 18Mn-18Cr austenitic steels for generator retaining rings. It will be a useful for the effective fabrication of high-nitrogen 18Mn-18Cr austenitic steels for generator retaining rings with the required tensile properties.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF