• 제목/요약/키워드: Non-linear stress-strain model

검색결과 94건 처리시간 0.022초

보강토 옹벽의 거동에 관한 유한요소 해석 (Finite Element Analysis of Reinforced Earth Wall Behavior)

  • 최인석;장연수;조광철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발 (A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model)

  • 남용윤;김사수;이상갑
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.181-188
    • /
    • 1994
  • Generally, the structural material shows rate dependent behaviors, which require to constitute different strain-stress relations according to strain rates. Conventional rate- independent constitutive equations used in general purpose finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate dependent constitutive equation for elastic-plastic material was developed. The plastic stretch rate was modeled based on slip model with dislocation velocity and density so that there is no yielding condition, and no loading conditions. Non-linear hardening rule was also introduced for finite strain. Material constants of present constitutive equation were determined by experimental data of mild steel. The constitutive equation was applied to uniaxile tension. It was appeared that the present constitutive equation well simulates rate dependent behaviors of mild steel.

  • PDF

차륜-레일 구름접촉에 의한 라체팅 모델링 (Simulation of Ratcheting in Wheel-Rail Contact)

  • 구병춘
    • 한국철도학회논문집
    • /
    • 제11권3호
    • /
    • pp.311-316
    • /
    • 2008
  • 일정한 크기의 응력이 반복적으로 작용할 때 매 사이클마다 변형이 증가하는 현상을 라체팅이라고 한다. 라체팅은 레일이나 차륜의 균열발생 기구의 하나이지만 실험적, 이론적 측면에서 아직 많은 연구를 필요로 하는 분야이다. 레일의 경우 접선력 방향으로 소성변형이 축적되는 것으로 알려져 있다. 본 연구에서는 차륜-레일의 구름 접촉에서 발생하는 응력의 이론해에 대해 살펴보고, 라체팅을 모델링 할 수 있는 비선형 이동 경화법칙을 사용하는 탄소성 구성방정식을 적용하여 라체팅 현상을 모델링 하였다. 일정 크기의 접촉력이 반복적으로 작용할 때 매 사이클마다 일정 크기의 소성변형이 발생하였다.

암석거동의 수치해석적 연구를 위한 균열모형의 적용 (Application of Mechanical Crack Model to Numerical Study of Rock Mass Behavior)

  • 박도현;전석원
    • 한국터널지하공간학회 논문집
    • /
    • 제2권2호
    • /
    • pp.72-85
    • /
    • 2000
  • 암석은 지질학적 생성과정으로 인해 잠재적으로 많은 구조적 결함을 내포하고 있는 재료이다. 이러한 구조적 결함으로 인해 압축하중을 받고 있는 암석의 변형거동 및 파괴는 비선형적이다. 지금까지의 연구들에서는 암석의 비선형 거동을 모사하기 위해 균열모형, 즉 활주균열모형 (Sliding crack model) 과 전단균열모형 (Shear crack model) 을 사용하였다. 이 연구들에서는 암석의 비선형 응력-변형률 곡선과 균열성장으로 인해 발생되는 유효탄성정수들 ($E_1$, $E_2$, ${\nu}_1$, ${\nu}_2$, $G_2$) 의 변화와 같은 여러 가지 암석 거동을 모사하였다 (Kemeny, 1993; Jeon, 1996, 1998). 대부분의 이러한 연구들은 주로 균열모형의 암석거동의 적용에 대한 타당성을 검증하는데 그쳤으며 지하공간이나 사면설계 등의 실제적인 수치해석을 목적으로 균열모형을 적용한 연구는 그다지 많지 않다. 본 연구에서는 암석의 비선형 응력 변형률 곡선을 모사함으로써 균열모형의 암석에의 적용에 대한 타당성을 검증하며 실제적인 수치해석, 즉 상용되고 있는 유한요소해석 프로그램에 균열모형을 적용하였다.

  • PDF

재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 (Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs)

  • 오경윤;조진구;홍종현
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

다구찌 실험법을 이용한 O-링 형상의 최적설계 (Optimized Design of O-Ring using Taguchi Method)

  • 조승현;김청균;김영규
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.241-247
    • /
    • 2003
  • The sealing performance of O-ring is effected in environments of the O-ring seal, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, design of composite O-ring under pressurized, compressed was optimized based on Taguchi experimental design method. and it analysed numerically using non-linear finite element method. Ogden model in which is developed based on the experimental data is used for simulating the contact stress and strain in NBR and PTFE materials. Sensitivity analysis was performed with FEM results, which are contact stress, strain and temperature as variable.

  • PDF

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • 제16권6호
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

$Nos\acute{e}-Poincar\acute{e}$ 분자 동역학 알고리즘을 이용한 나노 와이어의 역학적 거동 해석 (Analysis of Mechanical Behavior of Nanowire by $Nos\acute{e}-Poincar\acute{e}$ Molecular Dynamics Simulation)

  • 이병용;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.506-511
    • /
    • 2007
  • Mechanical behavior of copper nanowire is investigated. An FCC nanowire model composed of 1,408 atoms is used for MD simulation. Simulations are performed within NVT ensemble setting without periodic boundary conditions. $Nos\acute{e}-Poincar\acute{e}$ MD algorithm is employed to guarantee preservation of Hamiltonian and temperature. Numerical tensile tests of Nanowire are carried out with constant strain rate. Additionally, temperature and strain rate effects are considered. Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values. In (22,4,4) Copper nanowire, non-linear behavior appears around ${\epsilon}\simeq0.09.$ At this instance, starting of structural reorientations are observed. At the onset of reorientation, the modulus characteristics are also investigated.

  • PDF

극저사이클 하중하에서 강구조 부재의 비선형 유한요소해석 (Non-linear Finite Element Analysis of Steel Members Under Very-Low-Cycles of Loading)

  • 박연수
    • 전산구조공학
    • /
    • 제7권2호
    • /
    • pp.61-67
    • /
    • 1994
  • 본 수치해석의 목적은 앵글 강부재의 극저사이클과 파괴실험으로부터 얻어진 거동의 재현 및 특히, 부재중에서 사장 심한 응력을 받는 부분에 대한 국소 응력-변형률의 이력과 누적상황을 추적하는 것이다. 이를 위해, 범용 구조해석 프로그램인 MSC/NASTRAN을 이용하여, 재료 및 기하학적 비선형을 고려한 대변형 3차원 유한요소 해석을 행하였다. 해석은 2단계 즉, 해석 I과 II로 나누어 실시하였으며, 본 해석의 전반적인 거동은 실험결과와 매우 잘 일치하였다.

  • PDF