• Title/Summary/Keyword: Non-linear property

Search Result 187, Processing Time 0.027 seconds

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

Least Squares Based Adaptive Motion Vector Prediction Algorithm for Video Coding (동영상 압축 방식을 위한 최소 자승 기반 적응 움직임 벡터 예측 알고리즘)

  • Kim, Ji-hee;Jeong, Jong-woo;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1330-1336
    • /
    • 2004
  • This paper addresses an adaptive motion vector prediction algorithm to improve the performance of video encoder. The block-based motion vector is characterized by non-stationary local statistics so that the coefficients of LS (Least Squares) based linear motion can be optimized. However, it requires very expensive computational cost. The proposed algorithm using LS approach with spatially varying motion-directed property adaptively controls the coefficients of the motion predictor and reduces the computational cost as well as the motion prediction error. Experimental results show the capability of the proposed algorithm.

Feature Based Multi-Resolution Registration of Blurred Images for Image Mosaic

  • Fang, Xianyong;Luo, Bin;He, Biao;Wu, Hao
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Existing methods for the registration of blurred images are efficient for the artificially blurred images or a planar registration, but not suitable for the naturally blurred images existing in the real image mosaic process. In this paper, we attempt to resolve this problem and propose a method for a distortion-free stitching of naturally blurred images for image mosaic. It adopts a multi-resolution and robust feature based inter-layer mosaic together. In each layer, Harris corner detector is chosen to effectively detect features and RANSAC is used to find reliable matches for further calibration as well as an initial homography as the initial motion of next layer. Simplex and subspace trust region methods are used consequently to estimate the stable focal length and rotation matrix through the transformation property of feature matches. In order to stitch multiple images together, an iterative registration strategy is also adopted to estimate the focal length of each image. Experimental results demonstrate the performance of the proposed method.

An Experimental Study on Evaluation of Compressive Strength in Cement Mortar Using Averaged Electromagnetic Properties

  • Kwon, Seung-Jun;Maria, Q. Feng;Park, Tae-Won;Na, Ung-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • A non-destructive testing (NDT) method for evaluating physical properties of concrete including the compressive strength is highly desirable. This paper presents such an NDT method based on measurement of electromagnetic (EM) properties of the material. Experiments are carried out on cement mortar with different water/cement (W/C) ratios. Their EM properties including the conductivity and the dielectric constant are measured at different exposure conditions and curing periods over a wide frequency range of the EM wave. The compressive strength of these specimens is also tested. It is found that both the conductivity and the dielectric constant increase as the W/C ratio decreases and the curing period increases, which lead strength development in the specimens. A linear correlation is observed between the averaged EM properties over the 5 to 20 GHz frequency range and the measured compressive strength, demonstrating the effectiveness of the EM property-based NDT method in evaluating strength of OPC mortar.

A Basic Experimental Study on Noise Energy Harvesting for Green Infrastructure (녹색사회기반시설의 소음에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Kim, Hyun-Sik;Kim, Kyung-Tae;Yoon, Kwang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.559-565
    • /
    • 2010
  • In this study we propose noise energy harvesting for green infrastructure development. In this regard, infrastructures such as railroad, subway, and road are taken into consideration as sources of noise which provides energy through certain wave forms. As the need of recycling noise energy became reasonable due to the increase of infrastructure usage, the capacity and property of our noise energy generating device, which uses electromagnetic induction for electricity generation, are analysed in this paper. Consequently, the outcomes of this experiment show the fact that maximum electricity is generated from the device at a specific point of noise frequency, and the relation between air pressure caused by noise and the electricity generated by the device is in a specific proportional form either linear or non-linear. The major points of developing noise energy generating device in order to apply it into social infrastructure are discussed in this paper as well.

Super-Pixels Generation based on Fuzzy Similarity (퍼지 유사성 기반 슈퍼-픽셀 생성)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.147-157
    • /
    • 2017
  • In recent years, Super-pixels have become very popular for use in computer vision applications. Super-pixel algorithm transforms pixels into perceptually feasible regions to reduce stiff features of grid pixel. In particular, super-pixels are useful to depth estimation, skeleton works, body labeling, and feature localization, etc. But, it is not easy to generate a good super-pixel partition for doing these tasks. Especially, super-pixels do not satisfy more meaningful features in view of the gestalt aspects such as non-sum, continuation, closure, perceptual constancy. In this paper, we suggest an advanced algorithm which combines simple linear iterative clustering with fuzzy clustering concepts. Simple linear iterative clustering technique has high adherence to image boundaries, speed, memory efficient than conventional methods. But, it does not suggest good compact and regular property to the super-pixel shapes in context of gestalt aspects. Fuzzy similarity measures provide a reasonable graph in view of bounded size and few neighbors. Thus, more compact and regular pixels are obtained, and can extract locally relevant features. Simulation shows that fuzzy similarity based super-pixel building represents natural features as the manner in which humans decompose images.

Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials

  • Thair Hussein Khazaalah;Iskandar Shahrim Mustafa ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4708-4714
    • /
    • 2022
  • The novelty in the present search, the Soda-Lime-Silica (SLS) glass waste to prepare free lead glass shielding was used in order to limit the accumulation of glass waste, which requires extensive time to decompose. This also saves on the consumption of pure SiO2, which is a finite resource. Furthermore, the combining of BaO with Bi2O3 into a glass network leads to increased optical properties and improved attenuation. The UV-Visible Spectrophotometer was used to investigate the optical properties and the radiation shielding properties were reported for current glass samples utilizing the PhysX/PDS online software. The optical property results indicate that when BaO content increases in glass structure, the Urbach energy ΔE, and refractive index n increases while the energy optical band gap Eopt decreases. The result of the metallisation criteria (M) revealed that the present glass samples are nonmetallic (insulators). Furthermore, the radiation shielding parameter findings suggest that when BaO was increased in the glass structure, the linear attenuation coefficient and effective atomic number (Zeff) rose. But the half-value layer HVL declined as the BaO concentration grew. According to the research, the glass samples are non-toxic, transparent to visible light, and efficient radiation shielding materials. The Ba5 sample is considered the best among all the samples due to its higher attenuation value and lower HVL and MFP values, which make it a suitable candidate as transparent glass shield shielding.

Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives (기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.

Definition and Verification of the Dynamic Characteristics of the Anti-Vibration Mount for the Numerical Analysis (수치해석을 위한 방진 마운트의 동적 특성 결정 및 검증)

  • Han, Hyung-Suk;Park, Mi-Yoo;Cho, Heung-Gi;Kim, Joong-Gil;Im, Dong-Been
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3190-3195
    • /
    • 2010
  • Because the non-linear property of the rubber, the elastic modulus and damping factor of the rubber mount are dependent on the frequency. Therefore, the dynamic properties of the rubber mount should be considered when the anti-vibration mount is designed. Especially, when the numerical analysis is performed, the results can have much errors not considering the dynamic characteristics of the rubber mount. In this paper, the dynamic properties of typical standard rubber mount approved by ROK navy are defined experimentally and the results from the numerical analysis and experiment are compared for considering and non-considering the dynamic properties of the rubber mount respectively.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.