• Title/Summary/Keyword: Non-linear finite element analysis

Search Result 563, Processing Time 0.028 seconds

Development of Analysis System for Asphalt Pavement Structures under Various Vehicle Speeds (차량 주행속도를 고려한 아스팔트 포장구조체의 해석시스템 구축)

  • Kim, Soo-Il;Seo, Joo-Won;Yoo, Young-Gyu;Choi, Jun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.552-561
    • /
    • 2006
  • The purpose of this study is to propose a pavement analysis system which considers dynamic effects resulted from the various vehicle speeds. Vehicle loading effects were estimated by loading frequency and dynamic loads under various vehicle speeds. In addition, a proposed analysis model takes the non-linear temperature using a predictive model for dynamic modulus in asphalt layer and the non-linear stress in the unbound material. To examine adequacy of existing multi-layer elastic analysis of non-linear temperature in asphalt layer and non-linear stress conditions in unbound material, this study divided layers of asphalt pavement structures with 10 layers in asphalt, 2 layers in subbase and 1 layer in subgrade. In order to verify the pavement analysis system that considers various speeds, deflections of pavement calculated using ABAQUS, a three dimensional finite element program, were compared with the results of field tests under various speeds.

  • PDF

Non-linear Finite Element Analysis of Steel Members Under Very-Low-Cycles of Loading (극저사이클 하중하에서 강구조 부재의 비선형 유한요소해석)

  • 박연수
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.61-67
    • /
    • 1994
  • The objective of this numerical analysis is to trace the hysteretic behavior of steel angles under very-low-cycle loading test, especially the history and cumulative state of local stress-strain at their critical parts. The computer model is based on a three-dimensional, non-linear analysis by using the finite element program, MSC/NASTRAN, which includes the effects of the material and geometric non-linearities. The analysis was performed as two stage procedures, namely Analysis I and II. The overall behavior from this analysis showed good agreement with the experiment.

  • PDF

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

An Adaptive Mesh Refinement Scheme for 3D Non-Linear Finite Element Analysis of Magnetostatic Problems (3차원 비선형 정자장 문제의 유한요소 해석을 위한 적응 요소분할 기법)

  • Choi, Yong-Kwon;Seop, Ryu-Jae;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.306-313
    • /
    • 2006
  • A three dimensional adaptive finite element refinement algorithm is developed for non-linear magnetostatic field problems. In the method, the edge elements are used for finite element formulation, and the local error in each element is estimated from the fact that the tangential components of magnetic field intensity and the normal components of magnetic flux density should be continuous at the interface of the two adjacent elements. Based on the estimated error, the elements which have big error are divided into several elements using bisection method. The effectiveness of the developed algorithm is proved through numerical examples.

Analysis of the Dynamic Characteristics of the Linear Motors (선형 모터의 동특성 분석)

  • Seol, Jin-Soo;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.258-263
    • /
    • 2005
  • The nearest variety of the industrial world requires using the high precision and resolution positioning technology to do a semi-conductor, information field , and measurement field. It is especially important for the positioning technology that makes up a proper controller, is affected by the minimal heat and vibration, and can control a structurally generated non-linear friction factor to determine the efficiency of the system. The paper is to analyze the vibration characteristic according to the speed of linear motor and grasp the dynamic characteristic through the modal test and show the verification of the experimental result and design parameters by using FEM(Finite Element Method). Also, it shows the optimum standard analyzed the acceleration patterns of the moving part that lead to the vibration source in linear motor. It presents the analyzed dynamic of linear motor in compliance with a change of the non-linear factor.

  • PDF

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Non linear soil structure interaction of space frame-pile foundation-soil system

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

3-D Nonlinear Magnetostatic Analysis by using FEM (FEM을 이용한 3-D 비선형 정자계 모델의 해석)

  • Kang, Byung-Kill;Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.324-326
    • /
    • 2000
  • A 3D magnetostatic field is analyzed considering the non-linear characteristics of the material using finite element method. In the finite element formulation, the edge element is adopted since it reduces the required computer memory and the computing time. The modified Newton-Raphson method is also used for non-linear analysis. A numerical example with the TEAM workshop problem 13 is analyzed, and the results are proved to concide well with measured ones.

  • PDF

Determination of the Overall Heat Transfer Coefficient for Non-isothermal Finite Element Analysis (비 등온 유한요소해석을 위한 접면열전달계수의 결정)

  • 강연식;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.72-77
    • /
    • 1997
  • In the temperature analysis of hot metal forming process, the heat transfer conditions between the work-piece and the tool have improtant influences upon the temperature distribution. The accuracy of thermal analysis depends on the proper description of boundary conditions including heat transfer. At the contact surface of two materials with different temperatures, this requires the knowledge of the overall heat transfer coefficient. In order to determine the overall heat transfer coefficient, a technique is developed. The technique involves temperature measurement by using thermocouples during hot upsetting operations and finite element computation. The overall heat transfer coefficient is determined using a non-linear optimization technique.

  • PDF