• Title/Summary/Keyword: Non-linear expressions

Search Result 49, Processing Time 0.028 seconds

Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space

  • Singh, Baljeet;Bijarnia, Rupender
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.473-479
    • /
    • 2021
  • The propagation of plane waves in a linear, homogeneous and isotropic nonlocal generalized thermoelastic solid medium is considered in the framework of Lord and Shulman generalization. The governing field equations are formulated and specialized in a plane. Plane wave solutions of governing equations show that there exists three plane waves, namely, P, thermal and SV waves which propagate with distinct speeds. Reflection of P and SV waves from thermally insulated or isothermal boundary of a half-space is considered. The relevant boundary conditions are applied at stress free boundary and a non-homogeneous system of three equations in reflection coefficients is obtained. For incidence of both P and SV waves, the expressions for energy ratios of reflected P, thermal and SV waves are also obtained. The speeds and energy ratios of reflected waves are computed for relevant physical constants of a thermoelastic material. The speeds of plane waves are plotted against nonlocal parameter and frequency. The energy ratios of reflected waves are also plotted against the angle of incidence of P wave at a thermally insulated stress-free surface. The effect of nonlocal parameter is shown graphically on the speeds and energy ratios of reflected waves.

Nonlinear vibration of FG-CNTRC curved pipes with temperature-dependent properties

  • Mingjie Liu;Shaoping Bi;Sicheng Shao;Hadi Babaei
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2023
  • In the current research, the nonlinear free vibrations of curved pipes made of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) materials are investigated. It is assumed that the FG-CNTRC curved pipe is supported on a three-parameter nonlinear elastic foundation and is subjected to a uniform temperature rise. Properties of the curved nanocomposite pipe are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite pipe are temperature-dependent. The governing equations of the curved pipe are obtained using a higher order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the pipe. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved nanocomposite pipe. For the case of nanocomposite curved pipes which are simply supported in flexure and axially immovable, the motion equations are solved using the two-step perturbation technique. The closed-form expressions are provided to obtain the small- and large-amplitude frequencies of FG-CNTRC curved pipes rested on a nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of CNT distribution pattern, the CNT volume fraction, thermal environment, nonlinear foundation stiffness, and geometrical parameters on the fundamental linear and nonlinear frequencies of the curved nanocomposite pipe.

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

A Study on dress and its Ornaments for farm-music (농악복식(農樂服飾)에 관한 연구(硏究))

  • Suh, Ok-Kyu
    • Journal of the Korean Society of Costume
    • /
    • v.12
    • /
    • pp.9-23
    • /
    • 1988
  • This study is on the costumes for Korean traditional play, Nong-ak(farm music), and intends to analyze their aesthetic features, laying emphasis on Pilbong Nong-ak, Im sil, Chollanam-do. About its origin there are many kinds of theories; for example, the theory of hoping stability, the theory of it being related with Buddhism, the theory of martial music, etc. Shamanic, Buddhist, and martical fators that support these theories are expressed through flags, bells, drums, Deograe (half-coats), Cheonrips (sang-mo, felf hats), go-kkals(peaked hats), colored lines called 'ga-sa', which are used in Nong-ak. The characteristic of the costumes used in Pilbong Nong-ak is that it keeps its conservativeness and the costumes of its members are various and splendid. For example, leader groups' black half coats, Changbu's and Hwa-dong's red and bule over coats are remarkable. Particpants wear gok-kal or cheonrip, trousers and half coats which are the basic costumes of Korean Hanbok, and wear blak half coats or blue vests and put blue, red, and yellow lines around them. The colors and knotting methods of those lines in this region are the same with those of chollawoo-do and Kyongi province, but different form those of Kongwon and Kyong-sang province using green, red, and yellow colors. This comparison of colors shows each region's preference of peculiar colors and those colors coincide with colors used in flags. The research on the aesthetic characteristics of Nong-ak clothes through each region's clothes tells us that these can be linear clothes which have expressiveness as stage clothes used in Madangori, the play which is performed in the field, and modern spatial formativeness. Those characteristics are as follows; 1. The expressions of a rhythmical and daring round line by turning a long line of sang-mo. 2. Various rhythms according to the attaching methods. 3. The expressions of thick, simple, and daring color lines. 4. Natural beauty of materials. 5. The popular simplicity and non-technicality 6. The beauty of five-direction colors, Oriental ideal colors Consequently in this study our national consciousness of beauty are examined through clothes. It is suggested that the aesthetic characteristics of Nong-ak clothes and ornaments should be effectively expressed, for this purpose. interests in participants' clothes should be increased in order to prevent the confusion of each region's features. Also it is necessary to improve color lines, their length, width, and knotting methods, and beautify instrument. Finally this study intends to bring the reappraisal about the art of Nong-ak clothes and its re-establishment in view of modern aesthetic consciousness.

  • PDF

Study of emoticon as an emotional sign under the digital communication environment (디지털 커뮤니케이션 환경에서 감성기호로서 이모티콘에 관한 연구)

  • 조규명;김경숙
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.319-328
    • /
    • 2004
  • The communication environment made by digital technologies has made it possible to exchange information and deliver messages fast and easily among people of various classes in virtual space beyond time and space. Net-generation, who is accustomed to this virtual space, couldn't be satisfied with the linear text-oriented language any more, and began to make signs by use of computers in order to differentiate itself from others and to express its desires. Among the signs, emoticon created by joint of popular culture and digital communication centering around young generation is a new visual sign and emotional sign that can deliver a sender's feelings contained in a message. This paper has studied social phenomena, their relationships with emoticon and background of its creation through documentary review of media development, changes in the communication environment and popular culture. Furthermore, it has analyzed the meaningful action and roles of emoticon as a sign in terms of semiotics and also, studied a possibility of using emoticon as a new emotional sign. The study results say that emoticon can play the roles of a non-linguistic sign just like general signs that make mutual exchange through meaningful action, and also that it can be used to effectively deliver messages not only in virtual space, but also in advertising, posters, magazines and CI. However, emoticon is better at emotional expressions yet than other textual signs or visual signs, but in order to position itself as a universal and popular sign, emotional expressions should be clear, any difference in understanding messages should be removed, and message delivery should be more efficient.

  • PDF

Neural-network based Computerized Emotion Analysis using Multiple Biological Signals (다중 생체신호를 이용한 신경망 기반 전산화 감정해석)

  • Lee, Jee-Eun;Kim, Byeong-Nam;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Emotion affects many parts of human life such as learning ability, behavior and judgment. It is important to understand human nature. Emotion can only be inferred from facial expressions or gestures, what it actually is. In particular, emotion is difficult to classify not only because individuals feel differently about emotion but also because visually induced emotion does not sustain during whole testing period. To solve the problem, we acquired bio-signals and extracted features from those signals, which offer objective information about emotion stimulus. The emotion pattern classifier was composed of unsupervised learning algorithm with hidden nodes and feature vectors. Restricted Boltzmann machine (RBM) based on probability estimation was used in the unsupervised learning and maps emotion features to transformed dimensions. The emotion was characterized by non-linear classifiers with hidden nodes of a multi layer neural network, named deep belief network (DBN). The accuracy of DBN (about 94 %) was better than that of back-propagation neural network (about 40 %). The DBN showed good performance as the emotion pattern classifier.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF

A new method for infill equivalent strut width

  • Tabeshpour, Mohammad Reza;Arasteh, Arash Mahdipour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.257-268
    • /
    • 2019
  • Infills are as important members in structural design as beams, columns and braces. They have significant effect on structural behavior. Because of lots of variables in infills like material non-linear behavior, the interaction between frames and infill, etc., the infills performance during an earthquake is complicated, so have led designers do not consider the effect of infills in designing the structure. However, the experimental studies revealed that the infills have the remarkable effect on structure behavior. As if these effects ignored, it might occur soft-story phenomena, torsion or short-column effects on the structures. One simple and appropriate method for considering the infills effects in analyzing, is replacing the infills with diagonal compression strut with the same performance of real infill, instead of designing the whole infill. Because of too many uncertainties, codes and researchers gave many expressions that were not as the same as the others. The major intent of this paper is calculation the width of this diagonal strut, which has the most characteristics of infill. This paper by comprehensive on different parameters like the modulus of young or moment of inertia of columns presents a new formula for achieving the equivalent strut width. In fact, this new formula is extracted from about 60 FEM analyses models. It can be said that this formula is very efficient and accurate in estimating the equivalent strut width, considering the large number of effective parameters relative to similar relationships provided by other researchers. In most cases, the results are so close to the values obtained by the FEM. In this formula, the effect of out of plane buckling is neglected and this formula is used just in steel structures. Also, the thickness of infill panel, and the lateral force applied to frame are constant. In addition, this new formula is just for modeling the lateral stiffness. Obtaining the nearest response in analyzing is important to the designers, so this new formula can help them to reach more accurate response among a lot of experimental equations proposed by researchers.

PERISTALTIC PUMPING OF AN ELLIS FLUID IN AN INCLINED ASYMMETRIC CHANNEL

  • A. SMALL;P. NAGARANI;M. NARAHARI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.51-70
    • /
    • 2023
  • The flow of an incompressible Ellis fluid in an inclined asymmetric channel, driven by peristaltic waves was studied under low Reynolds number and long wavelength assumptions. The wave on each side of the channel are assumed to be an infinite train of sinusoidal waves, both having the same constant wave speed and wavelength however, they vary in wave amplitude, channel half width and phase angle. We derived expressions for the axial and transverse velocities, volume flow rate, pressure rise per unit wavelength and streamlines. The effects of varying the wave amplitudes, the phase angle, the channel width, the angle of inclination of the channel as well as the fluid parameters on the flow were analyzed. Trapping conditions were determined and the presence of reflux highlighted using the streamlines for the necessary channel and fluid conditions. By varying the fluid parameters, changes in the fluid that deviated from the Newtonian case resulted in a reduction in the axial velocity in the neighborhood of the center of the channel and a simultaneous increase in the velocity at the periphery of the channel. A nonlinear relation was observed with the pressure rise and the volume flow rate. This nonlinear relation is more pronounced with an increase in the absolute value of the volume flow rate. For Newtonian fluids a linear relation exists between these two variables. The fluid parameters had little effects on the streamlines. However, variations of the wave amplitudes, volume flow, channel width and phase angle had greater effects on the streamlines and hence the trapped region.