• Title/Summary/Keyword: Non-linear expressions

Search Result 49, Processing Time 0.033 seconds

Mechanics based analytical approaches to predict nonlinear behaviour of LSCC beams

  • Thirumalaiselvi, A.;Anandavalli, N.;Rajasankar, J.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.311-321
    • /
    • 2017
  • This paper presents the details of analytical studies carried out towards the prediction of flexural capacity and load-deflection behaviour of Laced Steel-Concrete Composite (LSCC) beams. Analytical expressions for flexural capacity of the beams are derived in accordance with the basic principles of conventional Reinforced Concrete (RC) beams, but incorporated with relevant modifications to account for the composite nature of the cross-section. The ultimate flexural capacity of the two LSCC beams predicted using the derived expressions is found to be approximately 20% lower than those obtained due to measurement from experiments. Further to these, two simple methods are also proposed on the basis of unit load method and equivalent steel beam method to determine the non-linear load-deflection response of the LSCC beams for monotonic loading. Upon validation of the proposed methods by comparing the predicted responses with those of experiments and finite element analysis, it is found that the methods are useful to find nonlinear response of such composite beams.

Spectrum Sharing-Based Multi-Hop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization

  • Bao, Vo Nguyen Quoc;Thanh, Tran Thien;Nguyen, Tuan Duc;Vu, Thanh Dinh
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.266-275
    • /
    • 2013
  • The exact closed-form expressions for outage probability and bit error rate of spectrum sharing-based multi-hop decode-and-forward (DF) relay networks in non-identical Rayleigh fading channels are derived. We also provide the approximate closed-form expression for the system ergodic capacity. Utilizing these tractable analytical formulas, we can study the impact of key network parameters on the performance of cognitive multi-hop relay networks under interference constraints. Using a linear network model, we derive an optimum relay position scheme by numerically solving an optimization problem of balancing average signal-to-noise ratio (SNR) of each hop. The numerical results show that the optimal scheme leads to SNR performance gains of more than 1 dB. All the analytical expressions are verified by Monte-Carlo simulations confirming the advantage of multihop DF relaying networks in cognitive environments.

A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.69-79
    • /
    • 2009
  • A non-clipped semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers is developed based on the stochastic averaging method and stochastic dynamical programming principle. A nonlinear stochastic control structure is first modeled as a semi-actively controlled, stochastically excited and dissipated Hamiltonian system. The control force of an MR damper is separated into passive and semi-active parts. The passive control force components, coupled in structural mode space, are incorporated in the drift coefficients by directly using the stochastic averaging method. Then the stochastic dynamical programming principle is applied to establish a dynamical programming equation, from which the semi-active optimal control law is determined and implementable by MR dampers without clipping in terms of the Bingham model. Under the condition on the control performance function given in section 3, the expressions of nonlinear and linear non-clipped semi-active optimal control force components are obtained as well as the non-clipped semi-active LQG control force, and thus the value function and semi-active nonlinear optimal control force are actually existent according to the developed strategy. An example of the controlled stochastic hysteretic column is given to illustrate the application and effectiveness of the developed semi-active optimal control strategy.

A Simple and Fast Algorithm for Real-time Pencil Strokes (간단하고 빠른 실시간 연필 스트로크 알고리즘)

  • Choi Sung-Wook
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.344-353
    • /
    • 2006
  • In this paper, we present a new algorithm which imitate real pencil strokes. The purpose of research on NPR(Non-Photorealistic Rendering) is simulating automatically manmade artistic expressions such as pen-and-ink illustrations, watercolor paintings, pencil sketches and pastel drawings with computers. Recently, there has been a great deal of research works on NPR. One of them is researching in pencil illustration methods for NPR, and a lot of researchers have investigated into the LIC(Linear Integral Convolution) techniques which would change the initial images into the output images by directional vector field images for generating effects of pencil. However, the LIC techniques can not be applied to real-time drawing tools because they are post processing techniques. This paper presents a real-time pencil strokes algorithm which is based on an observation of how pencils(from 6B to 6H) draw lines. Although this algorithm using some pencil variables and noise generation is simple, it is fast and also can draw real-time pencil strokes similar to real manmade pencil strokes in a GUI drawing tool.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

A REVIEW ON THE MATHEMATICAL ASPECTS OF FLUID FLOW PROBLEMS IN AN INFINITE CHANNEL WITH ARBITRARY BOTTOM TOPOGRAPHY

  • Chakrabarti, A.;Martha, S.C.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1583-1602
    • /
    • 2011
  • A special system of partial differential equations (PDEs) occur in a natural way while studying a class of irrotational inviscid fluid flow problems involving infinite channels. Certain aspects of solutions of such PDEs are analyzed in the context of flow problems involving multiple layers of fluids of different constant densities in a channel associated with arbitrary bottom topography. The whole analysis is divided into two parts-part A and part B. In part A the linearized theory is employed along with the standard Fourier analysis to understand such flow problems and physical quantities of interest are derived analytically. In part B, the same set of problems handled in part A are examined in the light of a weakly non-linear theory involving perturbation in terms of a small parameter and it is shown that the original problems can be cast into KdV type of nonlinear PDEs involving the bottom topography occurring in one of the coefficients of these equations. Special cases of bottom topography are worked out in detail and expressions for quantities of physical importance are derived.

Analysis of Optimal Buffer Capacities in 3-node Tandem Queues with Blocking (3-노(盧)드 유한 버퍼 일렬대기행렬에서의 최적 버퍼 크기에 대한 분석)

  • Seo, Dong-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.881-889
    • /
    • 2005
  • In this study, we consider characteristics of waiting times in single-server 3-node tandem queues with a Poisson arrival process, finite buffers and deterministic or non-overlapping service times at each queue. There are three buffers: one at the first node is infinite and the others are finite. The explicit expressions of waiting times in all areas of the systems, which are driven as functions of finite buffer capacities, show that the sojourn time does not depend on the finite buffer capacities and also allow one to compute and compare characteristics of waiting times at all areas of the system under two blocking policies: communication and manufacturing blocking. As an application of these results, moreover, an optimization problem which determines the smallest buffer capacities satisfying predetermined probabilistic constraints on waiting times is considered. Some numerical examples are also provided.

  • PDF

Closed form ultimate strength of multi-rectangle reinforced concrete sections under axial load and biaxial bending

  • da Silva, V. Dias;Barros, M.H.F.M.;Julio, E.N.B.S.;Ferreira, C.C.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.505-521
    • /
    • 2009
  • The analysis of prismatic members made of reinforced concrete under inclined bending, especially the computation of ultimate loads, is a pronounced non-linear problem which is frequently solved by discretizing the stress distribution in the cross-section using interpolation functions. In the approach described in the present contribution the exact analytical stress distribution is used instead. The obtained expressions are integrated by means of a symbolic manipulation package and automatically converted to optimized Fortran code. The direct problem-computation of ultimate internal forces given the position of the neutral axis-is first described. Subsequently, two kinds of inverse problem are treated: the computation of rupture envelops and the dimensioning of reinforcement, given design internal forces. An iterative Newton-Raphson procedure is used. Examples are presented.

Time domain flutter analysis of the Great Belt East Bridge

  • Briseghella, Lamberto;Franchetti, Paolo;Secchi, Stefano
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.479-492
    • /
    • 2002
  • A finite element aerodynamic model that can be used to analyse flutter instability of long span bridges in the time domain is presented. This approach adopts a simplified quasi-steady formulation of the wind forces neglecting the vortex shedding effects. The governing equations used are effective only for reduced velocities $V^*$ sufficiently great: this is generally acceptable for long-span suspension bridges and, then, the dependence of the wind forces expressions of the flutter derivatives can be neglected. The procedure describes the mechanical response in an accurate way, taking into account the non-linear geometry effects (large displacements and large strains) and considering also the compressed locked coil strands instability. The time-dependence of the inertia force due to fluid structure interaction is not considered. The numerical examples are performed on the three-dimensional finite element model of the Great Belt East Bridge (DK). A mode frequency analysis is carried out to validate the model and the results show good agreement with the experimental measurements of the full bridge aeroelastic model in the wind tunnel tests. Significant parameters affecting bridge response are introduced and accurately investigated.

Experimental Verification and Prediction of Generating Performance of PMG with Multi-Pole Rotor based on Electromagnetic Analysis and Parameter Estimation considering Skew Effects (스큐를 고려한 다극 영구자석 발전기의 전자기 특성해석/제어정수 도출을 통한 발전특성 예측 및 실험적 검증)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin;Park, Ji-Hoon;Lee, Sung-Ho;Kim, Ii-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.752-753
    • /
    • 2008
  • The analytical expressions for magnetic field distributions considering slotting effects, cogging torque and back-emf considering skew effects are established. On the basis of magnetic field solutions, electrical parameters such as back-emf constant and winding inductance are obtained. The predicted results are validated extensively by non-linear finite element (FE) analyses. In particular, test results such as back-emf, cogging torque, inductance and resistance measurements are given to confirm the analyses. Finally, generating performances are investigated by applying estimated parameters to equivalent circuit (EC) of the permanent magnet generator (PMG) and validated extensively by FE calculations and measurements.

  • PDF