• Title/Summary/Keyword: Non-linear dynamic analysis

검색결과 407건 처리시간 0.029초

Seismic fragility assessment of isolated structures by using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.389-398
    • /
    • 2018
  • The seismic isolation system makes a structure isolated from ground motions to protect the structure from seismic events. Seismic isolation techniques have been implemented in full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability and reliability. As for the responses of an isolated structure due to seismic events, it is well known that the most uncertain aspects are the seismic loading itself and structural properties. Due to the randomness of earthquakes and uncertainty of structures, seismic response distributions of an isolated structure are needed when evaluating the seismic fragility assessment (or probabilistic seismic safety assessment) of an isolated structure. Seismic response time histories are useful and often essential elements in its design or evaluation stage. Thus, a large number of non-linear dynamic analyses should be performed to evaluate the seismic performance of an isolated structure. However, it is a monumental task to gather the design or evaluation information of the isolated structure from too many seismic analyses, which is impractical. In this paper, a new methodology that can evaluate the seismic fragility assessment of an isolated structure is proposed by using stochastic response database, which is a device that can estimate the seismic response distributions of an isolated structure without any seismic response analyses. The seismic fragility assessment of the isolated nuclear power plant is performed using the proposed methodology. The proposed methodology is able to evaluate the seismic performance of isolated structures effectively and reduce the computational efforts tremendously.

유전자 알고리즘을 이용한 사면안정 해석 (Slope Stability Analysis Using the Genetic Algorithm)

  • 신방웅;백승철;김홍택;황정순
    • 한국지반공학회논문집
    • /
    • 제18권6호
    • /
    • pp.117-127
    • /
    • 2002
  • 사면의 파괴면 형태를 간단한 비선형 함수로 모델링하여 해석하는 결정론적인 사면안정 해석은 지층의 복합 특성과 불연속적인 특성을 효과적으로 반영하지 못하는 단점이 있다. 따라서, 본 연구에서는 결정론적인 방법 보다 지층의 제반조건들을 다양하게 반영할 수 있는 임의 탐색기법인 유전자 알고리즘을 이용한 사면안정 해석 방법을 제시하였다. 제시된 방법의 적합성을 확인하기 위해 단일지층 및 복합지층을 대상으로 하여 제안된 방법과 결정론적인 방법을 비교.검토하였으며, 검토결과 유전자 알고리즘을 이용한 사면안정해석 방법의 적용성을 검증할 수 있었다. 또한 제시된 사면안정 해석 방법에 강우강도에 따른 지하수위의 변화 예측모델을 적용하여 보다 합리적인 사면안정 해석 방법을 제시하였다.

압축된 방진고무의 강성 해석 (Stiffness Analysis of Compressed Rubber Components for Anti-Vibration)

  • 김국원;임종락;안태길
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.141-147
    • /
    • 1999
  • Optical disk technology with a laser beam for data recording and retrieval is one of the most promising route for high density information storage in multimedia era. As the storage density and data transfer rates are increased, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber components with complex shape and under pre-deformed state. In this paper, non-linear large deformations of a rubber mount for optical disk drive were investigated using the finite element method. A tension test of rubber material was performed, to calculate a strain energy function. According to the pre-deformed state, the variation of rubber mount stiffness were calculated and the reliability of numerical results were checked by compared with the measuring the deflection values. Also, the effects of the pre-deformed rubber mount on the system dynamic characteristics were investigated and the relation between the static stiffness variation of rubber mount and the natural frequence variation of system was discussed.

  • PDF

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

원호형 띠기초의 자유진동 해석 (Free Vibration Analysis of Circular Strip Foundations)

  • 이종국;강희종;이병구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.898-901
    • /
    • 2004
  • Since soil-structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil-structure interactions had been carried out. One of typical structures related to the soil-structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint, this paper aims to theoretically investigate dynamics of the circular strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out-of-plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of corresponding end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of non-linear equation.

  • PDF

Lyapunov 지수를 이용한 전력 수요 시계열 예측 (Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent)

  • 추연규;박재현;김영일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.171-174
    • /
    • 2009
  • 비선형 동력학 시스템으로 구성된 전력 수요의 시계열 데이터를 예측하기 위해 적용된 신경망 및 퍼지 적응 알고리즘 등은 예측오차가 상대적으로 크게 나타났다. 이는 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질에 기인하며 이중 초기값에 민감한 의존성은 장기적인 예측을 더욱더 어렵게 하는 요인으로 작용한다. 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질을 정량 및 정성적인 방식으로 분석을 수행하고, 시스템 동력학적 특성의 정량분석에 이용되는 Lyapunov 지수를 이용하여 어트랙터 재구성, 다차원 카오스 시계열 데이터를 예측하는 방식으로 수요예측 시뮬레이션을 수행하고 결과를 비교 평가하여 기존 제안방식보다 실용적이며 효과적임을 확인한다.

  • PDF

Summarized IDA curves by the wavelet transform and bees optimization algorithm

  • Shahryari, Homayoon;Karami, M. Reza;Chiniforush, Alireza A.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.165-175
    • /
    • 2019
  • Incremental dynamic analysis (IDA), as an accurate method to evaluate the parameters of structural performance levels, requires many non-linear time history analyses, using a set of ground motion records which are scaled to different intensity levels. Therefore, this method is very computationally demanding. In this study, a new method is presented to estimate the summarized (16%, 50%, and 84% fractiles) IDA curves of a first-mode dominated structure using discrete wavelet transform and bees optimization algorithm. This method reduces the number of required ground motion records for the prediction of the summarized IDA curves. At first, a subset of first list ground motion records is decomposed by means of discrete wavelet transform which have a low dispersion estimating the summarized IDA curves of equivalent SDOF system of the main structure. Then, the bees algorithm optimizes a series of factors for each level of detail coefficients in discrete wavelet transform. The applied factors change the frequency content of original ground motion records which the generated ground motions records can be utilized to reliably estimate the summarized IDA curves of the main structure. At the end, to evaluate the efficiency of the proposed method, the seismic behavior of a typical 3-story special steel moment frame, subjected to a set of twenty ground motion records is compared with this method.

Structural Breaks, Manufacturing Revolutions, and Economic Catch-up: Empirical Validation of Historical Evidence from South Korea

  • SALAHUDDIN, Taseer;YULEK, Murat A.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권1호
    • /
    • pp.13-24
    • /
    • 2022
  • The main goal of this study is to look at how South Korea can catch up to the rest of the world through policy-driven structural change and manufacturing revolutions. To achieve the objective, this study used annual data on real exports and real GDP from the World Development Indicator WDI of South Korea for the period 1960 to 2019. The study's goal is to use econometrics to detect this policy-driven structural change trend. Multiple nonlinear Granger causality test was used to accomplish this. The findings revealed structural breaks and nonlinearities in the dynamic link between South Korea's real GDP and real exports. Furthermore, results also show evidence of multiple structural breaks in South Korean data. South Korea's economic catch-up was the result of a constant reevaluation of industrial policies, readjustment, and structural change to constantly explore and utilize comparative advantage, realizing economies of scale at the global level, and reallocating and redistribution of resources towards productive sectors with high value-added output, according to econometric analysis. If South Korea would have not done this structural change this miracle to escape the middle-income trap would not have been possible. These findings support the descriptive evidence of structural change in favor of manufacturing revolutions and value addition industry development in South Korea.

RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구 (Dynamic forecasts of bankruptcy with Recurrent Neural Network model)

  • 권혁건;이동규;신민수
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.139-153
    • /
    • 2017
  • 기업의 부도는 이해관계자들뿐 아니라 사회에도 경제적으로 큰 손실을 야기한다. 따라서 기업부도예측은 경영학 연구에 있어 중요한 연구주제 중 하나로 다뤄져 왔다. 기존의 연구에서는 부도 예측을 위해 다변량판별분석, 로짓분석, 신경망분석 등 다양한 방법론을 이용하여 모형의 부도 예측력을 높이고 과적합의 문제를 해결하고자 시도하였다. 하지만 기존의 연구들이 시간적 요소를 고려하지 않아 발생할 수 있는 문제점들을 갖고 있음에도 불구하고 부도 예측에 있어서 동적 모형을 이용한 연구는 활발히 진행되고 있지 않으며 따라서 동적 모형을 이용하여 부도예측모형이 더욱 개선될 여지가 있다는 점을 확인할 수 있었다. 이에 본 연구에서는 RNN(Recurrent Neural Network)을 이용하여 시계열 재무 데이터의 동적 변화를 반영한 모형을 만들었으며 기존의 부도예측모형들과의 비교분석을 통해 부도 예측력의 향상에 도움이 된다는 것을 확인할 수 있었다. 모형의 유용성을 검증하기 위해 KIS Value의 재무 데이터를 이용하여 실험을 수행하였고 비교모형으로는 다변량판별분석, 로짓분석, SVM, 인공신경망을 선정하였다. 실험 결과 제안된 모형이 비교 모형에 비해 우수한 예측력을 보이는 것으로 나타났다. 따라서 본 연구는 변수들의 변화를 포착하는 동적 모형을 부도예측에 새롭게 제안하여 부도예측 연구의 발전에 기여할 수 있을 것으로 기대된다.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.