• 제목/요약/키워드: Non-linear compression

검색결과 163건 처리시간 0.025초

Local buckling of reinforcing steel bars in RC members under compression forces

  • Minafo, Giovanni
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.527-538
    • /
    • 2018
  • Buckling of longitudinal bars is a brittle failure mechanism, often recorded in reinforced concrete (RC) structures after an earthquake. Studies in the literature highlights that it often occurs when steel is in the post elastic range, by inducing a modification of the engineered stress-strain law of steel in compression. A proper evaluation of this effect is of fundamental importance for correctly evaluating capacity and ductility of structures. Significant errors can be obtained in terms of ultimate bending moment and curvature ductility of an RC section if these effects are not accounted, as well as incorrect evaluations are achieved by non-linear static analyses. This paper presents a numerical investigation aiming to evaluate the engineered stress-strain law of reinforcing steel in compression, including second order effects. Non-linear FE analyses are performed under the assumption of local buckling. A role of key parameters is evaluated, making difference between steel with strain hardening or with perfectly plastic behaviour. Comparisons with experimental data available in the literature confirm the accuracy of the achieved results and make it possible to formulate recommendations for design purposes. Finally, comparisons are made with analytical formulations available in the literature and based on obtained results, a modification of the stress-strain law model of Dhakal and Maekawa (2002) is proposed for fitting the numerical predictions.

No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening

  • Yang, Ronggang;Wang, Naige;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.481-492
    • /
    • 2022
  • Cycloidal ball planetary transmission (CBPT) has many applications as precision reducer, such as precision machinery and automation drive systems etc. The traditional analytical model of CBPT cannot accurately describe the change of the normal force of meshing points, and thus cannot describe the precise transmission process of meshing pairs. In the paper, a method for deriving the normal force equation is put forward by using the non-linear relationship between force and deformation in elastic mechanics. The two-point contact analytical models of all the meshing pairs are established to obtain the micro-displacement analytical model of CBPT under axial pre-tightening. Then, the non-real-time two-point contact analytical models of all the meshing pairs are further constructed to obtain the normal force expression to determine the critical compression coefficients. Experimental investigations are performed to verify the analytical model using the critical compression coefficients.

이동경화 모델에 기반한 MS1470 강판의 스프링백 예측 (Spring-back Prediction of MS1470 Steel Sheets Based on a Non-linear Kinematic Hardening Model)

  • 박상천;박태준;고영우;석동윤;;;정관수
    • 소성∙가공
    • /
    • 제22권6호
    • /
    • pp.303-309
    • /
    • 2013
  • Spring-back of MS1470 steel sheets was numerically predicted using a non-linear kinematic hardening material behavior based on the Yoshida-Uemori model. From uniaxial tension and uniaxial tension-compression-tension data as well as the uniaxial tension-unloading-tension data, the parameters of the Yoshida-Uemori model were obtained. For the numerical simulations, the Yoshida-Uemori model was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. The model performance was validated against the measured spring-back from the benchmark problems of NUMISHEET 2008 and NUMISHEET 2011, the 2-D draw bending test and the S-rail forming test, respectively.

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.

A curved shell finite element for the geometrically non-linear analysis of box-girder beams curved in plan

  • Calik-Karakose, Ulku H.;Orakdogen, Engin;Saygun, Ahmet I.;Askes, Harm
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.221-238
    • /
    • 2014
  • A four-noded curved shell finite element for the geometrically non-linear analysis of beams curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the form of transversal segments of identical topology where each slice is formed using a number of the curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is modelled using various meshes and linear analysis results are compared to the solutions of a well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used in modelling open-section beams with curved or straight axes and circular plates under radial compression. Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and results are compared with each other. The advantage of this element is that curved systems can be realistically modelled and satisfactory results can be obtained even by using coarse meshes.

초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석 (Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study)

  • 최항석;곽태훈;이철호;이동섭;티모시 스탁
    • 한국지반공학회논문집
    • /
    • 제27권11호
    • /
    • pp.5-15
    • /
    • 2011
  • 본 논문에서는 압축성이 매우 큰 준설 매립지반의 비선형 유한변형 압밀거동을 평가하기 위해 두 가지 압밀해석방법이 제시되었다. 이를 위해 동반논문에서 얻어진 초기간극비, 비선형의 간극비-유효응력 관계와 간극비-투수계수 관계를 비선형 압밀 물성치로 적용하였다. 단순화된 Morris의 간편 이론해(2002)와 대표적인 일차원 비선형 유한변형 압밀 프로그램인 PSDDF(Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill)의 해석결과를 일련의 실내실험을 통해 얻어진 인천 준설토와 카올리나이트의 자중압밀 침하거동과 비교하여, 실제 준설 매립지반의 장기간 비선형 유한변형 압밀거동을 모사하는데 두 방법의 적용이 타당함을 보였다. 또한, Craney Island 인공섬 사례분석을 통하여 적절한 비선형 유한변형 압밀 파라메터 선정의 중요성과 준설 매립지반의 압밀거동 평가시 PSDDF의 적용성을 제시하였다.

사석지반에 대한 쌍곡선 구성모델의 적용성 연구 (Study on the Adaptability of Hyperbolic Constitutive Model for Rubble Stone)

  • 황세환;김종수;권오균
    • 한국지반환경공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.53-63
    • /
    • 2002
  • 최근까지 우리나라의 암성토의 침하량을 산정하기 위해 가정된 탄성계수를 이용한 선형탄성해석 외에 다른 방법들이 시도되지 않고 있다. 특히 해상투기된 사석으로 구성된 방파제 구조물의 침하량을 정확히 산정하는 것은 거의 불가능하였다. 이 연구에서는 북제주의 채석장에서 채취한 3조의 다공질의 북제주의 화산암시료에 대해 대형삼축압축시험을 수행하였고 비선형모델을 이용하여 삼축압축시험을 수치해석으로 모사하였다. 실험과 해석에 의한 응력-변형률 거동이 비교되어 사석에 대한 하이퍼볼릭 구성모델의 적용성을 조사하였다. 비교 결과 두 응력-변형률 거동이 잘 일치하므로 하이퍼볼릭 모델은 느슨한 암성토체의 침하량을 산정하는데 적절한 것으로 판단되어진다.

  • PDF

영상 데이터 압축을 위한 2-채널 멀티웨이브렛 변환과 전후처리 필터의 적용 (Two-Channel Multiwavelet Transform and Pre/Post-Filtering for Image Compression)

  • 허웅;최재호
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권7호
    • /
    • pp.737-746
    • /
    • 2004
  • 본 논문에서는 영상 데이터 압축을 위하여 2- 채널 멀티웨이브렛 변환을 적용하였다. 멀티웨이브렛 시스템은 음성 데이터 등의 비정상적인 신호의 압축에 스칼라 웨이브렛 시스템을 능가하는 우수한 성능을 나타내는 것으로 알려져 있으나 2차원 데이터인 영상 데이터의 경우에는 멀티웨이브렛 시스템 특유의 시각적 격자 오류가 발생하는 문제가 있다. 본문의 멀티웨이브렛 변환 및 압축 시스템에서는 멀티웨이브렛 효과에 의하여 발생하는 격자 오류를 제거하기 위하여 전후처리 필터링을 멀티웨이브렛 변환 및 압축 시스템에 접목하는 방법을 제시하였다. 또한, 제안한 시스템의 성능을 검증하기 위하여 컴퓨터 시뮬레이션을 수행하였으며 영상 데이터의 압축 기능 측면에서 스칼라 웨이브렛 시스템과 비교하였다. 이때, 비트 할당과 양자화를 위해서 전송율 결과는 제안한 멀티웨이브렛 변화 및 압축 시스템이 스칼라 웨이브렛 시스템 보다 영상 압축 성능 측면에서 1 ~ 2 dB 우수한 것으로 나타났다. 만약 SPIHT과 run-length 채널 부호화 기법 등의 우수한 압축 기술을 멀티웨이브렛 변환 시스템에 적용한다면 더욱 우수한 성능 개선 효과를 기대할 수 있을 것으로 사료된다.

  • PDF

압축하중을 받는 방진고무의 동특성 해석 및 실험 (Analysis and Experiment of the Dynamic Characteristics of Rubber Materials for Anti-Vibration under Compression)

  • 김국원;임종락;한용희;손희기;안태길
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.900-907
    • /
    • 1998
  • Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties in the understanding of dynamic characteristics of the rubber components in compression. In this paper, the dynamic characteristics of rubber materials for anti-vibration under compression were investigated. Dynamic and static tests for rubber material with 3 different hardness were performed. In dynamic tests, non-resonance method, impedance method, was used to obtain the complex modulus(storage modulus and loss factor) and the effects of static pre-strain on the dynamic characteristics were investigated. Also, a relation equation between linear dynamic and nonlinear static behavior of rubber material was discussed and its usefulness to predict their combined effects was investigated.

  • PDF

Analytical evaluation of the moment-rotation response of beam-to-column composite joints under static loading

  • da Silva, L. Simoes;Coelho, Ana M. Girao;Simoes, Rui A.D.
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.245-268
    • /
    • 2001
  • The analysis of steel-concrete composite joints presents some particular aspects that increase their complexity when compared to bare steel joints. In particular, the influence of slab reinforcement and column concrete encasement clearly change the moment-rotation response of the joint. Starting from an energy approach developed in the context of steel joints, an extension to composite joints is presented in this paper that is able to provide closed-form analytical solutions. In addition, the possibility of tri-linear or non-linear component behaviour is also incorporated in the model, enabling adequate treatment of the influence of cracked concrete in tension and the softening response of the column web in compression. This methodology is validated through comparison with experimental tests carried out at the University of Coimbra.