• 제목/요약/키워드: Non-linear Vibration

검색결과 404건 처리시간 0.027초

Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method

  • Zhao, Yaobing;Sun, Ceshi;Wang, Zhiqian;Peng, Jian
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.487-500
    • /
    • 2014
  • An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). Different from the existing analytical technique, the HAM is indeed independent of the small parameter assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended Hamilton's principle, which takes into account the effects of the geometric nonlinearity and quasi-static stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear and nonlinear frequency ratio are investigated.

웨이브렛 변환을 이용한 압연기 베어링 고장-진단 시스템 설계에 관한 연구 (A Study on the Design of Fault-Diagnosis System for Healing Mill Bearing in Wavelet Transform)

  • 배영철;김이곤;최남섭;김경민;정양희
    • 한국정보통신학회논문지
    • /
    • 제4권5호
    • /
    • pp.951-961
    • /
    • 2000
  • 압연기의 기계적인 이상을 사전에 알아내는 압연기 베어링 고장-진단 시스템은 예측하지 못하는 압연 공정의 중단으로 인하여 발생하는 큰 피해를 사전에 막기 위해서 매우 중요한 시스템이다. 그러나 압연기의 동적 거동은 비선형 특성이 매우 강하기 때문에 압연기에서 사전에 고장 예측 정보를 제공하는 것은 매우 어렵다. 본 논문에서는 웨이브렛을 이용한 압연기의 고장 진단 방법을 제안하였으며 제안된 방법은 온라인으로 압연기에서 진동 신호를 실시간으로 측정하여 웨이브렛을 이용하여 패턴을 분석하고 분석된 결과로부터 고장 특징 정보를 얻었다. 얻어진 데이터를 이용하여 압연기 베어링을 진단하는 뉴로 퍼지 모델을 설계하고 수치적인 시뮬레이션을 통하여 그 타당성을 입증하였다.

  • PDF

심해 무인잠수정 1차 케이블의 동적거동 수치해석 (A Numerical Analysis for the Dynamic Behavior of the Umbilical Cable of a Deep-sea Unmanned Underwater Vehicle)

  • 권도영;박한일;정동호
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.31-38
    • /
    • 2005
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The umbilical cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behavior of a marine cable. In this study, a numerical program is established based on a finite difference method. The program is appled to 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

L 형 전륜 로어 암의 대하중 강도 해석 기법 연구 (A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm)

  • 이순욱;구자석;송민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

동적해석을 위한 일반화된$\alpha$ 방범의 예측 수정자 알고리즘 (A predictor-corrector algorithm of the generalized-$\alpha$ method for analysis of structural dynamics)

  • 정진태
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.207-213
    • /
    • 1995
  • 본 논문에서 구조동력학 문제를 풀기 위한 명시적(explicit) 예측 수정자 시간적분법을 개발하였으며, 이 알고리즘은 최근 개발된 암시적(implicit) 일반화된 $\alpha$ 방법으로부터 유도하였다. 암시적 방법과 같이 명시적 일반화된 .alpha. 방법도 하나의 변수를 갖는 알고리즘의 집합이며, 이 변수는 고주파 영역에서 수치 감쇠의 양을 정의한다. 제안된 알고리즘은 수치감쇠가 없는 시간적분법으로 파의 젼달 문제를 풀때 나타나는 가상의 진동을 감소시키는 수치감쇠를 가지고 있기 때문 에 선형 혹은 비선형의 구조동력학 문제에 효과적으로 이용될 수 있다.

  • PDF

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Prediction of the dynamic properties in rubberized concrete

  • Habib, Ahed;Yildirim, Umut
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.185-197
    • /
    • 2021
  • Throughout the previous years, many efforts focused on incorporating non-biodegradable wastes as a partial replacement and sustainable alternative for natural aggregates in cement-based materials. Currently, rubberized concrete is considered one of the most important green concrete materials produced by replacing natural aggregates with rubber particles from old tires in a concrete mixture. The main benefits of this material, in addition to its importance in sustainability and waste management, comes from the ability of rubber to considerably damp vibrations, which, when used in reinforced concrete structures, can significantly enhance its energy dissipation and vibration behavior. Nowadays, the literature has many experimental findings that provide an interesting view of rubberized concrete's dynamic behavior. On the other hand, it still lacks research that collects, interprets, and numerically investigates these findings to provide some correlations and construct reliable prediction models for rubberized concrete's dynamic properties. Therefore, this study is intended to propose prediction approaches for the dynamic properties of rubberized concrete. As a part of the study, multiple linear regression and artificial neural networks will be used to create prediction models for dynamic modulus of elasticity, damping ratio, and natural frequency.

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

열팽창성 그래파이트 함량에 따른 고탄성 도료 소재의 특성 분석 및 비선형 재료모델을 활용한 물성 예측 시뮬레이션 연구 (Characteristics Analysis of Highly Elastic Materials according to the Graphite Content and a Simulation Study of Physical Properties Prediction Using a Nonlinear Material Model)

  • 유성훈;이종혁;김대철;이병수;심지현
    • 한국염색가공학회지
    • /
    • 제34권4호
    • /
    • pp.250-260
    • /
    • 2022
  • In this research, a high-elasticity acrylic emulsion binder with core-shell polymerization and self-crosslinking system is mixed with a flame-retardant water-dispersed polyurethane (PUD) binder. In addition, finite element analysis was conducted through virtual engineering software ANSYS by applying three representative nonlinear material models. The most suitable nonlinear material model was selected after the relative comparison between the actual experimental values and the predicted values of the properties derived from simulations. The selected nonlinear material model is intended to be used as a nonlinear material model for computational simulation analysis that simulates the experimental environment of the vibration test (ASTM E1399) and the actual fire safety test (ASTM E1966). When the mass fraction of thermally expandable graphite was 0.7%, the thermal and physical properties were the best. Among the nonlinear material models, the simulation result of the Ogden model showed the closest value to the actual result.

구조물의 비선형 동적 해석을 위한 무한요소의 개발 (Development of an Infinite Element for Non-linear Dynamic Analysis of Structures)

  • 권민호;한길웅
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.1053-1058
    • /
    • 2010
  • 지반과 구조물의 상호작용을 해석하는 한 방법으로 지반을 무한의 영역으로 가정하여 이를 무한요소로 모델링한 후 구조물과 연동하여 해석하는 기법이 사용되었으나 하지만 기존의 동적 무한요소는 대부분 시간영역이 아닌 주파수 영역에서 정식화되었고 중첩의 원리가 적용되어 구조물이나 지반의 비선형 거동을 해석에 포함하기 어렵다. 본 연구에서는 시간영역에서 정식화가 가능하고 비선형 거동해석도 가능한 무한 요소를 개발하였다. 개발된 무한요소를 다량의 유한요소를 사용한 결과와 비교하여 정확도를 검증하였고, 비선형 지반모델을 적용하여 비선형해석이 가능함을 확인하였다. 따라서 개발된 무한요소를 지반-구조물 상호작용에 적용할 수 있으며, 이를 바탕으로 구조물내진 설계에도 활용할 수 있을 것으로 판단된다.