• Title/Summary/Keyword: Non-linear Numerical model

Search Result 423, Processing Time 0.025 seconds

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

Application of Mechanical Crack Model to Numerical Study of Rock Mass Behavior (암석거동의 수치해석적 연구를 위한 균열모형의 적용)

  • Park, Do-hyun;Jeon, Seok-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.72-85
    • /
    • 2000
  • Rock is a very complex and heterogeneous material, containing structural flaws due to geologic generation process. Because of those structural flaws, deformation and failure of rock when subjected to differential compressive stresses is non-linear. To simulate the non-linear behavior of rock, mechanical crack models, that is, sliding and shear crack models have been used in several studies. In those studies, non-linear stress-strain curves and various behaviors of rock including the changes of effective elastic moduli ($E_1$, $E_2$, ${\nu}_1$, ${\nu}_2$, $G_2$) due to crack growth were simulated (Kemeny, 1993; Jeon, 1996, 1998). Most of the studies have mainly focused on the verification of the mechanical crack model with relatively less attempt to apply it to practical purposes such as numerical analysis for underground and/or slope design. In this study, the validity of mechanical crack model was checked out by simulating the non-linear behavior of rock and consequently it was applied to a practical numerical analysis, finite element analysis commonly used.

  • PDF

Non linear seismic response of a low reinforced concrete structure : modeling by multilayered finite shell elements

  • Semblat, J.F.;Aouameur, A.;Ulm, F.J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.211-229
    • /
    • 2004
  • The main purpose of this paper is the numerical analysis of the non-linear seismic response of a RC building mock-up. The mock-up is subjected to different synthetic horizontal seismic excitations. The numerical approach is based on a 3D-model involving multilayered shell elements. These elements are composed of several single-layer membranes with various eccentricities. Bending effects are included through these eccentricities. Basic equations are first written for a single membrane element with its own eccentricity and then generalised to the multilayered shell element by superposition. The multilayered shell is considered as a classical shell element : all information about non-linear constitutive relations are investigated at the local scale of each layer, whereas balance and kinematics are checked afterwards at global scale. The non-linear dynamic response of the building is computed with Newmark algorithm. The numerical dynamic results (blind simulations) are considered in the linear and non linear cases and compared with experimental results from shaking table tests. Multilayered shell elements are found to be a promising tool for predictive computations of RC structures behaviour under 3D seismic loadings. This study was part of the CAMUS International Benchmark.

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

Comparison of linear and non-linear earthquake response of masonry walls

  • Sayin, Erkut;Calayir, Yusuf
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.17-35
    • /
    • 2015
  • In this study, linear and non-linear response of a masonry wall that includes an opening was presented. The masonry wall was modeled with two-dimensional finite elements. Smeared crack model that includes the strain softening behavior was selected to the masonry wall material. For the numerical application, linear and non-linear analyses of the masonry wall were carried out using east-west and vertical components of the 1992 Erzincan and 2003 $Bing{\ddot{o}}l$ earthquake acceleration records. Linear and non-linear solutions were compared each other. The displacement and stress results at the selected points of the masonry wall and crack propagation in the masonry wall were presented for both earthquake acceleration records.

Numerical Analysis for Contaminant Transport using a Dual Reactive Domain Model

  • 정대인;최종근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.122-126
    • /
    • 2002
  • Contaminant transport in porous media is characterized by solving an advection-dispersion equation(ADE). The ADE can cover equilibrium phenomena of interest, which include sorption, decay, and chemical reactions. Among these phenomena, sorption mechanism is described by several types of sorption isotherm. If we assume the sorption isotherm as linear, the solution of ADE can be easily procured. However, if we consider the sorption isotherm as non-linear isotherm like a Dual Reactive Domain Model (DRDM), the resulting differential equation becomes non-linear. In this case, the solution of ADE cannot be easily acquired by an analytic method. In this paper, we present the numerical analysis of ADE using a DRDM. The results reveal that even if sorption data may be fitted well using linear or non-linear isotherm, the characteristics of contaminant transport of the two cases are different from each other. To be concrete, the retardation of linear isotherm has stronger effect than that of the DRDM. As the non-linearity of sorption isotherm increases, the difference of retardation effects of the two cases becomes larger. For a pulse source, the maximum concentration of the linear model is higher than that of the DRDM, but the plume of the DRDM moves faster than that of the linear model. Behaviors of contaminant transport using the DRDM are consistent with common features of a linear model. For instance, biodegradation effect becomes larger as time goes by The faster the seepage velocity is, the faster the plume of contaminant moves. The plume of the contaminant is distributed evenly over overall domain in the event of high dispersion coefficient.

  • PDF

Numerical modelling of the damaging behaviour of the reinforced concrete structures by multi-layers beams elements

  • Mourad, Khebizi;mohamed, Guenfoud
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.547-562
    • /
    • 2015
  • A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at non-linear behaviour under monotonic and cyclical loading is presented. The non-linearity material is characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, the behaviour of cracked concrete and the interaction effect between materials represented by the post-cracking filled. These parameters are taken into consideration in this paper to examine the response of the reinforced concrete structures at the non-linear behaviour. Four examples of application are presented. The numerical results obtained, are in a very good agreement with available experimental data and other numerical models of the literature.

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Spring-back Prediction of MS1470 Steel Sheets Based on a Non-linear Kinematic Hardening Model (이동경화 모델에 기반한 MS1470 강판의 스프링백 예측)

  • Park, S.C.;Park, T.;Koh, Y.;Seok, D.Y.;Kuwabara, T.;Noma, N.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • Spring-back of MS1470 steel sheets was numerically predicted using a non-linear kinematic hardening material behavior based on the Yoshida-Uemori model. From uniaxial tension and uniaxial tension-compression-tension data as well as the uniaxial tension-unloading-tension data, the parameters of the Yoshida-Uemori model were obtained. For the numerical simulations, the Yoshida-Uemori model was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. The model performance was validated against the measured spring-back from the benchmark problems of NUMISHEET 2008 and NUMISHEET 2011, the 2-D draw bending test and the S-rail forming test, respectively.

NNDI decentralized evolved intelligent stabilization of large-scale systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This article focuses on stability analysis and fuzzy controller synthesis for large neural network (NN) systems consisting of several interconnected subsystems represented by the NN model. Advanced and fuzzy NN differential inclusion (NNDI) for stability based on the developed algorithm with H infinity can be designed based on the evolved biological design. This representation is constructed using sector linearity for NN models. Sector linearity transforms a non-linear model into a linear model based on proposed operations. New sufficient conditions are realized in the form of LMI (linear matrix inequalities) to ensure the asymptotic stability of the trans-Lyapunov function. This transforms the nonlinear model into a linear model based on multiple rules. At last, a numerical case study with simulations is derived as illustration to prove its feasibility in real nonlinear structures.