• Title/Summary/Keyword: Non-linear Klein-Gordon Equation

Search Result 3, Processing Time 0.02 seconds

MILD SOLUTIONS FOR THE RELATIVISTIC VLASOV-KLEIN-GORDON SYSTEM

  • Xiao, Meixia;Zhang, Xianwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1447-1465
    • /
    • 2019
  • In this paper, the relativistic Vlasov-Klein-Gordon system in one dimension is investigated. This non-linear dynamics system consists of a transport equation for the distribution function combined with Klein-Gordon equation. Without any assumption of continuity or compact support of any initial particle density $f_0$, we prove the existence and uniqueness of the mild solution via the iteration method.

THE EXACT SOLUTION OF KLEIN-GORDON'S EQUATION BY FORMAL LINEARIZATION METHOD

  • Taghizadeh, N.;Mirzazadeh, M.
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.631-635
    • /
    • 2008
  • In this paper we discuss on the formal linearization and exact solution of Klein-Gordon's equation (1) $u_{tt}-au_{xx}+bu-cu^3=0 a,b,c{\in}R^+$ So that we know an efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced.

Numerical Solution for Nonlinear Klein-Gordon Equation by Using Lagrange Polynomial Interpolation with a Trick (라그란제 보간을 사용한 비선형 클라인 고든 미분방적식의 수치해)

  • Lee In-Jung
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.571-576
    • /
    • 2004
  • In this paper, by using Lagrange polynomial interpolation with a trick such that for $f(x)^{3}$ we shall use $f(x_i)^{3}I_i(x)^{3}$ instead of $I(x)^{3}$ where $I{x}{\;}={\;}\sum_{i}^{f}(x_i)I_i(x)$. We show the convergence and stability and calculate errors. These errors are approximately less than $C(\frac{1}{N})^{N-1} hN(N-1)(\frac{N}{2})^{N-1} /(\frac{N}{2})!$ where N is a polynomial degree.