• Title/Summary/Keyword: Non-ischemic cardiomyopathy

Search Result 4, Processing Time 0.023 seconds

Utilities and Limitations of Cardiac Magnetic Resonance Imaging in Dilated Cardiomyopathy

  • Min Jae Cha;Yoo Jin Hong;Chan Ho Park;Yoon Jin Cha;Tae Hoon Kim;Cherry Kim;Chul Hwan Park
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1200-1220
    • /
    • 2023
  • Dilated cardiomyopathy (DCM) is one of the most common types of non-ischemic cardiomyopathy. DCM is characterized by left ventricle (LV) dilatation and systolic dysfunction without coronary artery disease or abnormal loading conditions. DCM is not a single disease entity and has a complex historical background of revisions and updates to its definition because of its diverse etiology and clinical manifestations. In cases of LV dilatation and dysfunction, conditions with phenotypic overlap should be excluded before establishing a DCM diagnosis. The differential diagnoses of DCM include ischemic cardiomyopathy, valvular heart disease, burned-out hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, and non-compaction. Cardiac magnetic resonance (CMR) imaging is helpful for evaluating DCM because it provides precise measurements of cardiac size, function, mass, and tissue characterization. Comprehensive analyses using various sequences, including cine imaging, late gadolinium enhancement imaging, and T1 and T2 mapping, may help establish differential diagnoses, etiological work-up, disease stratification, prognostic determination, and follow-up procedures in patients with DCM phenotypes. This article aimed to review the utilities and limitations of CMR in the diagnosis and assessment of DCM.

Non-mass-forming Lymphoma of the Left Ventricle Mimicking Non-ischemic Cardiomyopathy on MR Imaging: A Case Report (MRI에서 비허혈성 심근병증으로 오인된 좌심실의 림프종: 증례 보고)

  • Shin, Won-Seon;Kim, Sung-Mok;Choe, Yeon-Hyeon;Hyeon, Ji-Yeon;Kim, Jung-Sun;Chang, Sung-A
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.189-194
    • /
    • 2012
  • We report a case of cardiac lymphoma in a 40-year-old man, who had a mediastinal mass which was diagnosed as sclerosing mediastinitis pathologically. The mediastinal mass caused right pulmonary arterial stenosis. The patient developed myocardial hypertrophy and echocardiography showed restrictive physiology and severely decreased left ventricle ejection fraction, 6 months later. MRI showed global left ventricular myocardial hypertrophy and diffuse late gadolinium hyperenhancement after administration of contrast material. Thus, non-ischemic cardiomyopathy was suspected on MRI. However, pathology confirmed the myocardial abnormality as lymphoma after myocardial biopsy. Because a basal part of the left ventricle and global subendocardial myocardium were not involved on contrast-enhanced delayed MRI, the MRI abnormalities could be differentiated from amyloidosis and other myocardial diseases. The peculiar non-mass forming diffuse hypertrophy pattern of cardiac lymphoma has not been known in the MRI literature.

Evaluation of Sympathetic Innervation in Cardiomyopathy with $^{123}I-MIBG$ (심근병에서 $^{123}I-MIBG$ 영상을 이용한 교감신경기능의 평가)

  • Kim, Sun-Jung;Lee, Jong-Doo;Lee, Do-Yun;Park, Chang-Yoon;Ham, Jin-Kyung;Chung, Nam-Sik;Cho, Seung-Yun;Lee, Sung-Sook;Kim, Young-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.195-202
    • /
    • 1993
  • $^{123}Iodine$-metaiodobenzylguanidine (MIBG) which is a norepinephrine analogue, can be used to evaluate the sympathetic innervation of the heart. In this study, cardiac imaging with $^{123}I-MIBG$ was performed in patients with 9 dilated cardiomyopathy, 2 ischemic cardiomyopathy and 1 acute myocardial infarction to evaluate the sympathetic nervous function. $^{123}I-MIBG$ imaging showed multifocal defects (8), diffuse defect (2), near non-visualization (2). The defects of MIBG scans were found to be larger and more severe on 4 hours image than 30 minutes. Heart to lung, heart to mediastinum ratios were decreased at 4 hours than those at 30 minutes. Measured LVEF values were not correlated with the severity of MIBG uptake. $^{99m}Tc-MIBI$ imaging was also performed in all patients to find the relationship with $^{123}I-MIBG$ scan. $^{99m}Tc-MIBI$ scan showed multifocal defects in 9 patients, diffuse defects in 1 patient and no defect in 2 patients. The defects are similar in size, severity and extent, but more larger and severe on $^{123}I-MIBG$ imaging. Therefore, cardiac $^{123}I-MIBG$ imaging is a useful method to evaluate the sympathetic nervous function in cardiomyopathy.

  • PDF

Method Development of Verapamil in Presence of NSAIDs using RP-HPLC Technique

  • Sultana, Najma;Arayne, M. Saeed;Waheed, Abdul
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2274-2278
    • /
    • 2011
  • Verapamil is a calcium channel blocker and is classified as a class IV anti-arrhythmic agent. It is used in the control of supra ventricular tachyarrhythmias, and in the management of classical and variant angina pectoris. It is also used in the treatment of hypertension and used as an important therapeutic agent for angina pectoris, ischemic heart disease, hypertension and hypertrophic cardiomyopathy. Verapamil commonly co-administered with NSAIDs (non-steroidal anti-inflammatory drugs) i.e. diclofenac sodium, flurbiprofen, Ibuprofen, mefanamic acid and meloxicam. A simple and rapid RP-HPLC method for simultaneous determination and quantification of verapamil and NSAIDs was developed and validated. The mobile phase constituted of acetonitrile: water (55:45) whose pH was adjusted at 2.7 and pumped at a flow rate of 2.0 mL $min^{-1}$ at 230 nm. The proposed method is simple, precise, accurate, low cost and least time consuming for the simultaneous determination of verapamil and NSAIDs which can be effectively applied for the analysis of human serum.