• Title/Summary/Keyword: Non-intrusive load monitoring

Search Result 15, Processing Time 0.026 seconds

Power Signal Recognition with High Order Moment Features for Non-Intrusive Load Monitoring (비간섭 전력 부하 감시용 고차 적률 특징을 갖는 전력 신호 인식)

  • Min, Hwang-Ki;An, Taehun;Lee, Seungwon;Lee, Seong Ro;Song, Iickho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.608-614
    • /
    • 2014
  • A pattern recognition (PR) system is addressed for non-intrusive load monitoring. To effectively recognize two appliances (for example, an electric iron and a cook top), we propose a novel feature extraction method based on high order moments of power signals. Simulation results confirm that the PR system with the proposed high order moment features and kernel discriminant analysis can effectively separate two appliances.

Load Profile Disaggregation Method for Home Appliances Using Active Power Consumption

  • Park, Herie
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.572-580
    • /
    • 2013
  • Power metering and monitoring system is a basic element of Smart Grid technology. This paper proposes a new Non-Intrusive Load Monitoring (NILM) method for a residential buildings sector using the measured total active power consumption. Home electrical appliances are classified by ON/OFF state models, Multi-state models, and Composite models according to their operational characteristics observed by experiments. In order to disaggregate the operation and the power consumption of each model, an algorithm which includes a switching function, a truth table matrix, and a matching process is presented. Typical profiles of each appliances and disaggregation results are shown and classified. To improve the accuracy, a Time Lagging (TL) algorithm and a Permanent-On model (PO) algorithm are additionally proposed. The method is validated as comparing the simulation results to the experimental ones with high accuracy.

Algorithm of Analysing Electric Power Signal for Home Electric Power Monitoring in Non-Intrusive Way (가정용 전력 모니터링을 위한 전력신호 분석 알고리즘 개발)

  • Park, Sung-Wook;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.679-685
    • /
    • 2011
  • This paper presents an algorithm identifying devices that generate observed mixed signals that are collected at main power-supply line. The proposed algorithm, which is necessary for low cost electric power monitoring system at appliance-level, that is non-intrusive load monitoring system, divides incoming mixed signal into multiple time intervals, calculating difference-signals between consecutive time interval, and identifies which device is operating at the time interval by analysing the difference-signals. Since the features of one device can remain when the time interval is short enough and the features are independent and additive, well-known classification algorithms can be used to classify the difference-signals with features of N individual devices, otherwise $2^N$ features might be necessary. The proposed algorithm was verified using data mixed in a laboratory with individual devices's data collected from field. When maximum 4 devices operate or stop sequentially and when features satisfy the requirements of proposed algorithm, the proposed algorithm resulted nearly 100% success rate under the constrained test condition. In order to apply the proposed algorithm in real world, the number devices shall increase, the time interval shall be smaller and the pattern of mixture shall be more diverse. However we can expect, if features used follow guidelines of proposed algorithm, future system could have certain level of performance without the guideline.

Non-Intrusive Load Monitoring Method based on Long-Short Term Memory to classify Power Usage of Appliances (가전제품 전력 사용 분류를 위한 장단기 메모리 기반 비침입 부하 모니터링 기법)

  • Kyeong, Chanuk;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.109-116
    • /
    • 2021
  • In this paper, we propose a non-intrusive load monitoring(NILM) system which can find the power of each home appliance from the aggregated total power as the activation in the trading market of the distributed resource and the increasing importance of energy management. We transform the amount of appliances' power into a power on-off state by preprocessing. We use LSTM as a model for predicting states based on these data. Accuracy is measured by comparing predicted states with real ones after postprocessing. In this paper, the accuracy is measured with the different number of electronic products, data postprocessing method, and Time step size. When the number of electronic products is 6, the data postprocessing method using the Round function is used, and Time step size is set to 6, the maximum accuracy can be obtained.

Classification Method of Multi-State Appliances in Non-intrusive Load Monitoring Environment based on Gramian Angular Field (Gramian angular field 기반 비간섭 부하 모니터링 환경에서의 다중 상태 가전기기 분류 기법)

  • Seon, Joon-Ho;Sun, Young-Ghyu;Kim, Soo-Hyun;Kyeong, Chanuk;Sim, Issac;Lee, Heung-Jae;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • Non-intrusive load monitoring is a technology that can be used for predicting and classifying the type of appliances through real-time monitoring of user power consumption, and it has recently got interested as a means of energy-saving. In this paper, we propose a system for classifying appliances from user consumption data by combining GAF(Gramian angular field) technique that can be used for converting one-dimensional data to the two-dimensional matrix with convolutional neural networks. We use REDD(residential energy disaggregation dataset) that is the public appliances power data and confirm the classification accuracy of the GASF(Gramian angular summation field) and GADF(Gramian angular difference field). Simulation results show that both models showed 94% accuracy on appliances with binary-state(on/off) and that GASF showed 93.5% accuracy that is 3% higher than GADF on appliances with multi-state. In later studies, we plan to increase the dataset and optimize the model to improve accuracy and speed.

A Study on Urination Amount Estimation for the Male by the Measurement of Body Weight Difference (체중 변화 측정을 통한 남성 배뇨량 추정 방법 연구)

  • Lim, Yong-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.69-73
    • /
    • 2015
  • In this study, a method for estimating the amount of urination for men, was suggested and its performance was evaluated. This study is a preliminary one for the development of a health monitoring system that needs un-constraining, non-intrusive and long-term measurements in daily life. To estimate the amount of urination, a wide weighing plate with load cell was built and the difference in a man's weights between before and after urination was measured while he was standing on the plate. The results showed that the amount of urination can be estimated with the measured weight difference under the condition of mild movements. The largest measurement error of the suggested method was 40g, which means that this method can be applied to health monitoring in daily life. It is expected that the results of this study will be the basis for developing practical un-constraining and non-intrusive health monitoring system for daily use at home.

Data Processing and Analysis of Non-Intrusive Electrical Appliances Load Monitoring in Smart Farm (스마트팜 개별 전기기기의 비간섭적 부하 식별 데이터 처리 및 분석)

  • Kim, Hong-Su;Kim, Ho-Chan;Kang, Min-Jae;Jwa, Jeong-Woo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.632-637
    • /
    • 2020
  • The non-intrusive load monitoring (NILM) is an important way to cost-effective real-time monitoring the energy consumption and time of use for each appliance in a home or business using aggregated energy from a single recording meter. In this paper, we collect from the smart farm's power consumption data acquisition system to the server via an LTE modem, converted the total power consumption, and the power of individual electric devices into HDF5 format and performed NILM analysis. We perform NILM analysis using open source denoising autoencoder (DAE), long short-term memory (LSTM), gated recurrent unit (GRU), and sequence-to-point (seq2point) learning methods.

A Study on Improving Identification Rate of Non-Intrusive Appliance Load Monitoring(NIALM) Using Combined Sensor (복합센서를 이용한 비접촉 전력 기반 가전기기 식별률 개선에 관한 연구)

  • Kim, Byungmin;Yun, Jungmee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.956-958
    • /
    • 2016
  • 비절전 가전기기는 제품수명을 고려할 때 전력을 소비하는 가정 내 가전기기의 대부분을 차지하지만 에너지 효율 정책의 사각지대에 있다. 본 논문에서는 비절전 가전기기의 에너지 절감을 위해 전력 총량에서 각 가전기기의 상태를 식별하는 NIALM의 기기 식별률을 복합센서를 활용해 개선하는 기술에 대해서 소개하고자 한다.

Development of Data Acquisition System for Smart Farm Non-Intrusive Load Monitoring (스마트팜 비간섭 전력 부하 감시를 위한 데이터취득 시스템 개발)

  • Kim, Hong-Su;Kim, Ho-Chan;Jwa, Jeong-Woo;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.322-325
    • /
    • 2019
  • The non-intrusive load monitoring(NILM) algorithm can infer the power usage of the individual electric devices by the total electric power consumption of the main line. To develop such an algorithm, power usage pattern data of individual devices as well as those of various combinations of these devices are required. In this paper, we propose a method to develop a power usage pattern data acquisition system for developing a NILM algorithm for a smart farm. The data acquisition system is capable of simultaneously measuring the power usage of individual electrical devices and the power usage according to various combinations of scenarios every second. The measured data can be remotely monitored from the outside of the smart farm through the LTE network, and the measured data is stored in an external server.

Preliminary Study on Appliance Load Disaggregation Using Dynamic Time Warping Method (Dynamic Time Warping(DTW)기법을 이용한 가전기기별 부하 패턴 분류 기초연구)

  • Jang, Minseok;Kong, Seongbae;Ko, Rakkyung;Chong, Ju Young;Joo, Sung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.45-46
    • /
    • 2015
  • 가전기기별 에너지 사용정보를 제공함으로써 가정에서 효율적인 에너지 사용을 유도할 수 있다. 가전기기별 사용정보를 효과적으로 제공하기 위해서는 NILM (Non-Intrusive Load Monitoring) 기법이 필요하다.본 논문에서는 개별 가전기기 분류단계에서 쓰이는 DTW(Dynamic Time Warping) 기법을 소개한다. DTW 기법은 다른 두 시계열 데이턴간의 유사도를 측정하는 패턴인식 기법 중 하나이다. 이 유사도를 이용하여 가전기기의 동작여부를 판별하고 분류를 수행한다.

  • PDF