• Title/Summary/Keyword: Non-hydration

Search Result 136, Processing Time 0.023 seconds

Evaluation of Filling Performance of Steel Concrete Panel (SCP) Mock-up Member with Low-binder based High-fluidity Concrete (저분체 기반 고유동 콘크리트의 Steel Concrete Panel Mock-up 부재 충전 성능 평가)

  • Park, Gi Joon;Park, Jung Jun;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.477-483
    • /
    • 2019
  • Recently, precast type SCP modules are being used instead of PSC structures in order to reduce the construction period and costs of special structures such as nuclear power plants and LNG storage tanks. The inside of the SCP module is connected with a stud for the integral behavior of the steel and concrete, and the use of high fluidity concrete is required. High fluidity concrete generally has a high content of binder, which leads to an increase in hydration heat and shrinkage, and a problem of non-uniform strength development. Therefore, in this study, fluidity and passing performance of high fluidity concrete according to material properties are investigated to select optimum mix design of low binder based high fluidity concrete. Mechanical properties of high fluidity concrete before and after pumping are examined using pump car. The filling performance of SCP mock-up members was evaluated by using high fluidity concrete finally.

Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers (박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.371-378
    • /
    • 2021
  • The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic polymers showed the anti-adhesion effect for bioentities, such as proteins and bacteria. This is attributed to the formation of surface barrier from hydration layers, repulsions and osmotic stresses from polymer brushes, and electrostatic interactions between ionic polymers and cell surfaces. The antifouling polymer coating is usually fabricated by the grafting method through the bonding with functional groups on surfaces and the deposition method utilizing biomimetic anchors. This mini-review is a summary of representative antifouling polymers, coating strategies, and antibacterial efficacy. Furthermore, we will discuss consideration on the large area surface coating for application to public facilities and industry.

Application of internet of things for structural assessment of concrete structures: Approach via experimental study

  • D. Jegatheeswaran;P. Ashokkumar
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Assessment of the compressive strength of concrete plays a major role during formwork removal and in the prestressing process. In concrete, temperature changes occur due to hydration which is an influencing factor that decides the compressive strength of concrete. Many methods are available to find the compressive strength of concrete, but the maturity method has the advantage of prognosticating strength without destruction. The temperature-time factor is found using a LM35 temperature sensor through the IoT technique. An experimental investigation was carried out with 56 concrete cubes, where 35 cubes were for obtaining the compressive strength of concrete using a universal testing machine while 21 concrete cubes monitored concrete's temperature by embedding a temperature sensor in each grade of M25, M30, M35, and M40 concrete. The mathematical prediction model equation was developed based on the temperature-time factor during the early age compressive strength on the 1st, 2nd, 3rd and 7th days in the M25, M30, M35, and M40 grades of concrete with their temperature. The 14th, 21st and 28th day's compressive strength was predicted with the mathematical predicted equation and compared with conventional results which fall within a 2% difference. The compressive strength of concrete at any desired age (day) before reaching 28 days results in the discovery of the prediction coefficient. Comparative analysis of the results found by the predicted mathematical model show that, it was very close to the results of the conventional method.

A Study on the Physical Properties of Recycled Aggregates Using Concrete of Changing Waste Pottery Blain Fineness (폐도자기 분말도 변화에 따른 순환골재 사용 콘크리트의 물리적 특성에 관한 연구)

  • Ryu, Hyun-Gi;Park, Jeong-Min;Joung, Jae-Ho;Kim, Eui-Chang;Yoon, Seung-Joe
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Objective of this study is to identify properties on strength increase of hardened concrete and fluidization of non-hardened concrete using waste ceramics generated by construction waste, which is a type of industrial waste, and by ceramics, which is a clay plastic, during its production process, and determine length change ratio caused by drying shrinkage during substitution of recycle aggregate and waste ceramics, and whether they can be used as concrete compounds. Slump of non-hardened concrete exhibited the best fluidization and formability at recycled aggregate's replacement ratio of 60% driven by higher substitution ratio of recycled aggregate and waste ceramics while air content met the KS requirement when substitution ratio of waste ceramics was $4,000cm^2/g$. Compressive strength of hardened concrete exceeded the requirements at early age and standard age and temperature dropped by roughly $6{\sim}10^{\circ}C$ less than the standard at maximum temperature in adiabatic temperature increase, which will hopefully result in stronger durability.

  • PDF

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF

The Influence of Nano Synthesized Polymer Paint on Durability of Concrete (나노합성 무기질 폴리머계 표면처리제가 콘크리트의 내구성에 미치는 영향)

  • Beak, Jong-Myeong;Park, Youg-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • This experiment was compared and analyzed between the original surface paint through chloride penetration, neutralization, freeze-thaw and chemical corrosion resistance measuring internal structure and volume of voids in order to evaluate the effect of increase in durability of the newly modeled nano synthesized polymer paint painted on concrete surface which results improvement on air permeability to increase the durability of concrete structures. The test result of measuring volume of void and inner structure, concrete, spreaded with nano synthesized polymer paint, showed decreasing trend of pore volume in the range of less than $0.1{\mu}m$ and more than $0.3{\mu}m$. Also, using an electron microscope inside showed tightness of hydration texture. Chloride penetration depth of concrete, painted with nano synthesized polymer paint, was decreased more than 92% compared to non-painted concrete and 70% with water-based epoxy painted concrete. Especially, chemical corrosion resistance test set with aqueous solution of 5% sulfuric acid, non-painted concrete and water-based epoxy painted concrete showed weight loss of 4% after dipping for 12 days. On the other hand, concrete painted with nano synthesized polymer paint showed 1.7% weight loss under the same condition. Also, it showed great result of appearance under the criteria of Tsivilis et al.

Isoflavone Contents in Some Varieties of Soybean and on Processing Conditions (콩의 종류와 가공 조건에 따른 isoflavone의 함량 변화)

  • 문보경;전기숙;황인경
    • Korean journal of food and cookery science
    • /
    • v.12 no.4
    • /
    • pp.527-534
    • /
    • 1996
  • enistein (G), and daidzein (D), the major isoflavones, were analyzed in 14 varieties of Korean soybean and various processed soybean products by using high performance liquid chromatography. Isoflavone contents (G+D) were greatly variable among varieties ranged from 308.2 $\mu\textrm{g}$/g to 1,134.2 $\mu\textrm{g}$/g and highest in Danyopkong and Jinpumkong. Among hypocotyl, cotyledon and hull of soybean the concentration of the isoflavone (G+D) in the hypocotyl was highest ranged from 2,971.7 $\mu\textrm{g}$/g to 5,704.9 $\mu\textrm{g}$/g. The distributions of genistein and daidzein were also different in hypocotyl, cotyledon and hull. Higher ratio of daidzein to genistein (D/G) was found in the hypocotyl (4-12) compared to cotyledon and hull (0.1-4). Isoflavone (G+D) contents of soymilks (Sinpaldal#2, Eunhakong) prepared at 16 hour hydration were decreased to 1.1-1.2 times compared with that at 8 hour hydration. Commercial soymilks contained much lower isoflavone (G+D) than laboratory soymilks. Soybean curd (Eunhakong) prepared with MgCl$_2$ showed higher isoflavone (G+D) contents than that with CaSO$_4$. But these values of two different soybean curds made at laboratory were similar to those of 3 commercial curds. The concentration of the isoflavones in soybean sprout separated with 3 parts revealed highest in the head and lowest in the stem. Compared with non-fermented soybean foods the fermented soybean produfts, Kochujang and soybean paste, Duen Jang, showed very low contents of isoflavone (G+D),2.8-3.0 $\mu\textrm{g}$/g, 35.9-63.6 $\mu\textrm{g}$/grespectively.

  • PDF

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Improved Storage Stability of Brown Rice by Coating with Rice Bran Protein (쌀겨 단백질 코팅에 의한 현미의 저장성 향상)

  • Kim, Kyung-Mi;Jang, In-Suk;Ha, Sang-Do;Bae, Dong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.490-500
    • /
    • 2004
  • Brown rice grains were coated by spraying aqueous protein solution extracted from rice bran using 10% ethanol, and dried at room temperature. Coating procedure was repeated 1-5 times to determine effect of repeated coating, Quality changes in coated brown rice grains were observed during 8 weeks storage. Most coated rice grains gave lower peroxide and acid values, which indicate antioxidative effects of coating. Lipase and lipoxygenase activities generally decreased in grains coated more than three times. Microscopic images of whole kernel and longitudinal section revealed cracking on all brown rice grains including control, and hydration rate constants were not significantly different among treated grains. Compared to non-coated brown rice grains, those coated more than three times, after 8 week storage, showed better quality retention observed in (meaning not clear) higher water-binding capacity, lower gel consistency decrease, less browning, and better textural properties in cooked rice, resulting in better sensory quality.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.