• Title/Summary/Keyword: Non-grid

Search Result 632, Processing Time 0.024 seconds

Range Query Processing of Distributed Moving Object Databases using Scheduling Technique (스케쥴링 기법을 이용한 분산 이동 객체 데이타베이스의 범위 질의 처리)

  • Jeon, Se-Gil;Hwang, Jae-Il;Nah, Youn-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.51-62
    • /
    • 2004
  • Recently, the location-based service for moving customers is becoming one of the most important service in mobile communication area. For moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. The primary processing of LBS application is spatio-temporal range queries. To improve the throughput of spatio-temporal range queries, the time of disk I/O in query processing should be reduced. In this paper, we adopt non-uniform two-level grid index structures of GALIS architecture,which are designed to minimize update operations. We propose query scheduling technique using spatial relationship and time relationship and a combined spatio-temporal query processing method using time zone concepts to improve the throughput of query processing. Some experimental results are shown for range queries with different query range to show the performance tradeoffs of the proposed methods.

  • PDF

Potential Flow Analysis around Ship with Goose-neck Type Bulbous Bow Penetrating Free Surface (자유수면을 관통하는 거위목 벌브를 가진 선박 주위의 포텐셜 유동해석)

  • Choi, Hee-Jong;Park, Il-Heum;Kim, Jong-Kyu;Kim, Ok-Sam;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.18-22
    • /
    • 2011
  • The Ranking source panel method was used to predict the flow phenomenon of a ship with a goose-neck type bulbous bow penetrating the free surface. The non-linearity of the free surface boundary condition was fully satisfied using an iterative calculation method, and the raised panel method was adopted to obtain a more stable solution at each iteration step. The panel cutting method was applied to generate a hull calculation grid at each iteration step, including the first step. At that time, the nose of the goose-neck type bulbous bow was divided by the free surface and the free surface panel was modified at each iteration step using the variable free surface panel method. Numerical calculations were performed to investigate the validity and efficiency of the applied numerical algorithm using the 3600 TEU container carrier. The computed wave resistance coefficients were compared with the experimentally achieved residual resistance coefficients.

A Study on Harmonic Resonance in a DFIG Wind Turbine-generator Connected to a Distribution Power Line (DFIG 풍력발전기가 연계된 배전선로의 고조파 공진 특성에 관한 연구)

  • Choi, Hyung-Joo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1383-1389
    • /
    • 2013
  • There were telecommunication noise and malfunctions of the electronic devices occurred over a wide area due to the high harmonic voltage and/or current levels of the Back-to-back converter in the DFIG wind power system even though the magnitude of all harmonics is within the international standards. The triangular carrier signals of the PWM used in the power converter system is related to the telecommunication noise because they are in the range of audible frequencies and amplified by a variety of the standing waves that were excited by harmonic voltage sources in the weak grid system such as a long distance distribution transmission lines. This paper describes the characteristics of the harmonics in the wind turbine-generator, numerical analysis and simulation of the harmonics resonance phenomena in the distribution lines as well as measuring induced voltage of the telecommunication lines in parallel with power lines in order to verify the root cause of the telecommunication noise. These noise problems can occur in a wind turbine power system with a non-linear converter at any time, as well as photovoltaic power system. So, the preliminary review of suitable filter devices and switching frequencies of the PWM have to be required by considering the stability of the controller at the design stage but as part of the measures the effect of the telecommunication cable shields was analyzed by comparing the measured data between multi-conductor with/without shields so as to attenuate the sources of the harmonics voltage induced into the telecommunication lines and to apply the most cost-effective measures in the field.

COMPUTATION OF TURBULENT NATURAL CONVECTION IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME BASED LATTICE BOLTZMANN METHOD (유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여 직사각형 공동에서의 난류 자연대류 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 2011
  • A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.

Tracer Experiment for the Investigation of Urban Scale Dispersion of Air Pollutants - Simulation by CALPUFF Dispersion Model and Diffusion Feature of Tracer Gases (추적자 확산 실험에 의한 서울 도심 확산 현상 연구 - 추적기체의 확산특징과 CALPUFF 모델에 의한 모사)

  • Lee, Chong-Bum;Kim, Jea-Chul;Lee, Gang-Woong;Ro, Chul-Un;Kim, Hye-Kyeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.405-419
    • /
    • 2007
  • A series of tracer experiments for the evaluation of atmospheric dispersion was performed over the urban area of Seoul using two inert, non-deposition perfluorocarbon (PMCH and m-PDCH) gases during three years campaign on 2002, 2003 and 2005. 30 sampling sites for collecting these tracers were located along two arcs of 2.5 and 5 kilometers downwind from the release point. About ten measurements which each lasted for 2 hours or 4 hours were made over the two consecutive days during each campaign. CALPUFF and MM5 meteorological model were applied to evaluate the urban dispersion in detail. Size of Modeling domain was $27\;km{\times}23\;km$ and the fine nest in the modeling domain had a grid size of 0.5 km. The results showed that CALPUFF dispersion model had a tendency to estimate tracer concentrations about $2{\sim}5$ times less than those of ambient samples under many conditions. These consistent inaccuracy in urban dispersion was attributed to inherent inaccuracy and lack of details in terrain data at urban area.

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea (전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

Surgical Strategies in Patients with the Supplementary Sensorimotor Area Seizure

  • Oh, Young-Min;Koh, Eun-Jeong;Lee, Woo-Jong;Han, Jeong-Hoon;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.5
    • /
    • pp.323-329
    • /
    • 2006
  • Objective : This study was designed to analyze surgical strategies for patients with intractable supplementary sensorimotor area[SSMA] seizures. Methods : Seventeen patients who had surgical treatment were reviewed retrospectively. Preoperatively, phase I [non-invasive] and phase II [invasive] evaluation methods for epilepsy surgery were done. Seizure outcome was assessed with Engel's classification. The mean follow-up period was 27.2 months [from 12 months to 54 months]. Results : An MRI identified structural abnormality in eight patients and 3D-surface rendering revealed abnormal gyration in three. PET, SPECT, and surface EEG could not delineate the epileptogenic zone. Video-EEG monitoring with a subdural grid or depth electrodes verified the epileptogenic zone in all patients. Surgical procedures consisted of a resection of the SSMA and simultaneous callosotomy in two patients, a resection of the SSMA extending to the adjacent area in seven, a resection of a different area without a SSMA resection in seven, and a callosotomy in one. Seizure outcomes were class I in 11 [65%]. class II in five [29%], class III in one [6%]. Conclusion : In patients with intractable SSMA seizure, surgery was an excellent treatment modality. Precise delineation of the epileptogenic zone based on multimodal diagnostic methods can provide good surgical outcomes without neurological complications.

Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection (접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법)

  • Han, Jong-Goo;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.833-839
    • /
    • 2016
  • In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.

A Numerical Study on the Pressure Drop and Heat Transfer in the Hot Channel of Plate heat Exchanger with Chevron Shape (쉐브론 형상 판형 열교환기의 고온 채널에서의 압력손실 및 열전달 특성에 관한 해석 연구)

  • Sohn, Sangho;Shin, Jeong-Heon;Kim, Jungchul;Yoon, Seok Ho;Lee, Kong Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.175-185
    • /
    • 2018
  • This research investigates the internal flow and heat transfer in a plate heat exchanger with chevron shape by utilizing the computational fluid dynamics (CFD) software. The basic unit of the plate heat exchanger is generally composed of a hot channel, an intermediate chevron plate, and a cold channel. Several studies have reported experimental and numerical simulation of heat transfer and pressure drop. This study focused on the detailed numerical simulation of flow and heat transfer in the complicated chevron shape channel. The long chevron plate was designed to include 16 chevron patterns. For proper mesh resolution, the number of cells was determined after the grid sensitivity test. The working fluid is water, and its properties are defined as a function of temperature. The Reynolds number ranges from 900 to 9,000 in the simulation. A realizable $k-{\varepsilon}$ model and non-equilibrium wall function are properly considered for the turbulent flow. The friction factors and heat transfer coefficient are validated by comparing them with existing empirical correlations, and other patterned flow phenomena are also investigated.

Simulation of Body Motion Caused by a Solitary Wave using the FDS-HCIB Method (FDS-HCIB법을 이용한 고립파에 의한 물체 운동 모사)

  • Shin, Sangmook;Kim, In Chul;Kim, Yong Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.265-273
    • /
    • 2014
  • Wave-body interaction is simulated using a developed code based on the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method. A free surface is captured as a moving contact discontinuity within a fluid domain and an approximated Riemann solver is used to estimate the inviscid flux across the discontinuity. Immersed boundary nodes are identified inside an instantaneous fluid domain near a moving body, then dependent variables are reconstructed at those immersed boundary nodes based on interpolation along local normal lines to the boundary. Free surface flows around an oscillating cylinder are simulated and the computed wave elevations are compared with other reported results. The generation of a solitary wave by a moving wave-maker is simulated and the time histories of wave elevations at two different points are compared with other results. The developed code is applied to simulate body motion of an elastically mounted circular cylinder as a solitary wave passes the body. The force acting on an elastically mounted cylinder is compared with the force acting on a fixed cylinder. Grid independency of the computed body motion is established based on a comparison of results using three different-size grids.