• Title/Summary/Keyword: Non-equilibrium state

Search Result 135, Processing Time 0.031 seconds

Dynamics of alpine treelines: positive feedbacks and global, regional and local controls

  • Kim, Jong-Wook;Lee, Jeom-Sook
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Whilst it is clear that increasing temperatures from global environmental change will impact the positions of alpine treelines, it is likely that a range of regional and local scaled factors will mediate the overall impact of global scale climate drivers. We summarized 12 categories of abiotic and biotic factors as 4 groups determining treeline positions. First, there are global factors related to climate-induced growth limitation and carbon limitation. Second, there are seven regional and local factors related to treeline dynamics including frost stress, topography, water stress, snow, wind, fire and non-fire disturbance. Third, species-specific factors can control treeline dynamics through their influence on reproduction and life history traits. Fourth, there are positive feedbacks in structuring the dynamics of treelines. Globally, the commonly accepted growth limitation hypothesis is that growth at a treeline is limited by temperature. Meanwhile, positive feedbacks between canopy cover and tree establishment are likely to control the spatial pattern and temporal dynamics of many treelines. The presence of non-linear dynamics at treelines has implications for the use of treelines as barometers of climate change because the lagged responses and abrupt shifts inherent in non-equilibrium systems may combine to mask the overall climate trend.

A Study on the Influence of the Punch Stroke of Bead on the Draw-bead process by using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드 펀치 행정거리가 드로우비드 공정에 미치는 영향에 관한 연구)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2001
  • The bead is used to provide properly restraining force in the sheet metal forming process. This bead process includes bending and geometrical non-linearity, and affects the state of binderwrap. Therefore, the analysis of bead process is very important to obtain the desired formability. In this paper, the research about the influence of the punch stroke of bead on the draw-bead process was conducted. Results from the analysis will give useful information to the effective tool design of blank forming process. To analyze the bead process, and elasto-plastic finite element formulation is constructed from the equilibrium equation and the considered boundary conditions involved a proper contact condition. The static-explicit finite element method as a numerical method for the analysis was applied to the analysis program code. It was found that this method could solve too much computation time and convergence problem owing to high non-linearity of bead forming process.

  • PDF

A Review of Kinetic Model for Production of Highgrade Steel : Part. 2. Complex Reaction Model and Single Reaction Model (고급강 제조 반응 모델의 검토 : Part. 2. 종합 모델 및 단일 반응 모델)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • As a demand of high-end steel raises, the importance of secondary refinement process also increases. However, the content of each component in molten steel, slag and inclusions change with the time, meaning the secondary refinement process is not an equilibrium state. Furthermore, many reactions occur between molten steel, slag, inclusion, refractory and alloying element during secondary refinement process. In order to consider the above complex reactions with non-equilibrium state, a few researchers developed kinetic models in secondary refinement process based on the experimental numerical equations. It is important to analyze and review to the previously reported models to develop a precise model. Therefore, in present study, the complex reaction models based on kinetic in secondary refinement process were analyzed, reviewed, and introduced. Moreover, the single reaction models also introduced which would be applied to the complex reaction models.

The Influence of Air Cavity on Interface Doses for Photon Beams (X선치료 조사야 내 공동의 존재에 따른 선량분포의 측정)

  • Chung Se Young;Kim Young Bum;Kwon Young Ho;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • When a high energy photon beam is used to treat lesions located in the upper respiratory air passages or in maxillary sinus, the beams often must traverse an air cavity before it reaches the lesion. Because of this traversal of air, it is not clear that the surface layers of the lesion forming the air-tumor tissue interface will be in a state of near electronic equilibrium; if they are not, underdosing of these layers could result. Although dose corrections at large distances beyond an air cavity are accountable by attenuation differences, perturbations at air-tissue interfaces are complex to measure or calculate. This problem has been investigated for 4MV and 10MV X-ray beams which are becoming widely available for radiotherapy with linear accelerator. Markus chamber was used for measurement with variouse air cavity geometries in X-ray beams. Underdosing effects occur at both the distal and proximal air cavity interface. The magnitude depended on geometry, energy, field sizes and distance from the air-tissue interfaces. As the cavity thickness increased, the central axis dose at the distal interface decreased. Increasing field size remedied the underdosing, as did the introduction of lateral walls. Fellowing a $20{\times}2{\times}2\;cm^3$\;air\;cavity,\;4{\times}4\;cm\;field\;there\;was\;an\;11.5\%\;and\;13\%\;underdose\;at\;the\;distal\;interface,\;while\;a\;20{\times}20{\times}2\;cm^3\;air\;cavity\;yielded\;a\;24\%\;and\;29\%$ loss for the 4MV and 10MV beams, respectively. The losses were slightly larger for the 10MV beams. The measurements reported here can be used to guide the development of new calculation models under non-equilibrium conditions. This situation is of clinical concern when lesions such as larynx and maxillary carcinoma beyond air cavities are irradiated.

  • PDF

Analysis of cable structures through energy minimization

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.749-758
    • /
    • 2017
  • In structural mechanics, traditional analyses methods usually employ matrix operations for obtaining displacement and internal forces of the structure under the external effects, such as distributed loads, earthquake or wind excitations, and temperature changing inter alia. These matrices are derived from the well-known principle of mechanics called minimum potential energy. According to this principle, a system can be in the equilibrium state only in case when the total potential energy of system is minimum. A close examination of the expression of the well-known equilibrium condition for linear problems, $P=K{\Delta}$, where P is the load vector, K is the stiffness matrix and ${\Delta}$ is the displacement vector, it is seen that, basically this principle searches the displacement set (or deformed shape) for a system that minimizes the total potential energy of it. Instead of using mathematical operations used in the conventional methods, with a different formulation, meta-heuristic algorithms can also be used for solving this minimization problem by defining total potential energy as objective function and displacements as design variables. Based on this idea the technique called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) is proposed. The method has been successfully applied for linear and non-linear analyses of trusses and truss-like structures, and the results have shown that the approach is much more successful than conventional methods, especially for analyses of non-linear systems. In this study, the application of TPO/MA, with Harmony Search as the selected meta-heuristic algorithm, to cables net system is presented. The results have shown that the method is robust, powerful and accurate.

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Geometrically non-linear dynamic analysis of plates by an improved finite element-transfer matrix method on a microcomputer

  • Chen, YuHua
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.395-402
    • /
    • 1994
  • An improved finite element-transfer matrix method is applied to the transient analysis of plates with large displacement under various excitations. In the present method, the transfer of state vectors from left to right in a combined finite element-transfer matrix method is changed into the transfer of generally incremental stiffness equations of every section from left to right. Furthermore, in this method, the propagation of round-off errors occurring in recursive multiplications of transfer and point matrices is avoided. The Newmark-${\beta}$ method is employed for time integration and the modified Newton-Raphson method for equilibrium iteration in each time step. An ITNONDL-W program based on this method using the IBM-PC/AT microcomputer is developed. Finally numerical examples are presented to demonstrate the accuracy as well as the potential of the proposed method for dynamic large deflection analysis of plates with random boundaries under various excitations.

Deformation Analysis of Injection Molded Articles due to In-mold Residual Stress and Cooling after Ejection (사출 성형품의 금형내 잔류응력과 이형후 냉각에 의한 후변형 해석)

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.251-256
    • /
    • 2001
  • Deformation analysis of injection molded articles whose geometry is considered as the assembly of the thin flat plates has been conducted. For the in-mold analysis, thermo-viscoelastic stress calculation of rheologically simple amorphous polymer and in-mold deformation calculation considering the in-plane mold constraint has been done. Free volume theory has been used for the non-equilibrium density state by the fast cooling. At ejection, the redistribution of stress together with instantaneous deformation has been considered. During out-of-mold cooling after ejection, thermoelastic model based on the effective temperature has been adopted for the calculation of deformation. Two typical mold geometries are used to test the numerical simulation.

  • PDF

A Numerical Study of Heat and Mass Transfer Phenomena for Thermal Protection Material (열보호재료의 열 및 물질전달 현상에 관한 수치해석적 연구)

  • Kim, Jung-Hoon;Kwon, Chang-Oh;Seo, Jeong-Il;Bai, Cheol-Ho;Song, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1201-1212
    • /
    • 1999
  • A numerical analysis is performed to predict the thermal response and ablation rate for charring or non-charring material which is designed to be used as thermal protection system (TPS). The numerical program composed of in-depth energy balance equation and the aerotherm chemical equilibrium (ACE) program. The ACE program calculates various thermochemical state from ablation products. The developed numerical program is verified by comparing the reported results from literature. The sensitivity tests for input parameters are performed. The thermal behavior of ablating material is mainly affected by density of ablating material, convective heat transfer coefficient and recovery enthalpy of flow field.

Dynamic Response of An Airship at Cruising

  • Yoshimasa, Ochi;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.2-148
    • /
    • 2001
  • The most important difference of an airship from conventional vehicle is that it has the apparent mass and inertia provided from the existence of Helium gas inside the airship. To acquire To acquire the exact response of the airship, the longitudinal responses of airship with respect to the vertical gust, which is the non-linear system, have been studied. An Airship has neutral buoyancy in equilibrium state. When it moves, its motion shows much difference comparing with conventional aircraft. Here, we compare two cases, the one has the apparent mass and the other hasn´t. With the apparent mass, the magnitude of the former response is smaller than the latter, while the frequency is higher. However, the apparent mass delay ...

  • PDF