• Title/Summary/Keyword: Non-equilibrium ballistic transport

Search Result 2, Processing Time 0.017 seconds

Analysis of Electron Transport in InAlAs/InGaAs HBT by Hybride Monte Carlo Simulation (Hybrid Monte Carlo 시뮬레이션에 의한 InAlAs/InGaAs HBT의 전자전송 해석)

  • 송정근;황성범;이경락
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.922-929
    • /
    • 1997
  • As the size of semiconductor devices shrinks in the horizontal as well as vertical dimension it is difficult to estimate the transport-velocity of electron because they drift in non-equilibrium with a few scattering. In this paper HYbrid Monte Carlo simulator which employs the drift-diffusion model for hole-transport and Monte Carlo model for electron-transport in order to reduce the simulation time and increase the accuracy as well has been developed and applied to analyze the electron-transport in InAlAs/InGaAs HBT which is attractive for an ultra high speed active device in high speed optical fiber transmission systems in terms of the velocity and energy distribution as well as cutoff frequency.

  • PDF

Quantum Transport Simulations of CNTFETs: Performance Assessment and Comparison Study with GNRFETs

  • Wang, Wei;Wang, Huan;Wang, Xueying;Li, Na;Zhu, Changru;Xiao, Guangran;Yang, Xiao;Zhang, Lu;Zhang, Ting
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.615-624
    • /
    • 2014
  • In this paper, we explore the electrical properties and high-frequency performance of carbon nanotube field-effect transistors (CNTFETs), based on the non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. The calculated results show that CNTFETs exhibit superior performance compared with graphene nanoribbon field-effect transistors (GNRFETs), such as better control ability of the gate on the channel, higher drive current with lower subthreshold leakage current, and lower subthreshold-swing (SS). Due to larger band-structure-limited velocity in CNTFETs, ballistic CNTFETs present better high-frequency performance limit than that of Si MOSFETs. The parameter effects of CNTFETs are also investigated. In addition, to enhance the immunity against short - channel effects (SCE), hetero - material - gate CNTFETs (HMG-CNTFETs) have been proposed, and we present a detailed numerical simulation to analyze the performances of scaling down, and conclude that HMG-CNTFETs can meet the ITRS'10 requirements better than CNTs.