• 제목/요약/키워드: Non-ductile reinforced concrete building

검색결과 25건 처리시간 0.023초

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델 (Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System)

  • 신지욱;전종수;김준희
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

Case study on seismic retrofit and cost assessment for a school building

  • Miano, Andrea;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.53-64
    • /
    • 2020
  • In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.

A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries

  • Kyriakides, Nicholas;Ahmad, Sohaib;Pilakoutas, Kypros;Neocleous, Kyriacos;Chrysostomou, Christis
    • Earthquakes and Structures
    • /
    • 제6권6호
    • /
    • pp.665-687
    • /
    • 2014
  • This paper presents a framework for analytical seismic vulnerability assessment of substandard reinforced concrete (RC) structures in developing countries. Amodified capacity-demand diagram method is used to predict the response of RC structures with degrading behaviour. A damage index based on period change is used to quantify the evolution of damage. To demonstrate the framework, a class of substandard RC buildings is examined. Abrupt accumulation of damage is observed due to the brittle failure modes and this is reflected in the developed vulnerability curves, which differ substantially from the curves of ductile structures.

Static vulnerability of existing R.C. buildings in Italy: a case study

  • Maria, Polese;Gerardo M., Verderame;Gaetano, Manfredi
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.599-620
    • /
    • 2011
  • The investigation on possible causes of failures related to documented collapses is a complicated issue, primarily due to the scarcity and inadequacy of information available. Although several studies have tried to understand which are the inherent structural deficiencies or circumstances associated to failure of the main structural elements in a reinforced concrete frame, to the authors knowledge a uniform approach for the evaluation building static vulnerability, does not exist yet. This paper investigates, by means of a detailed case study, the potential failure mechanisms of an existing reinforced concrete building. The linear elastic analysis for the three-dimensional building model gives an insight on the working conditions of the structural elements, demonstrating the relevance of a number of structural faults that could sensibly lower the structure's safety margin. Next, the building's bearing capacity is studied by means of parametric nonlinear analysis performed at the element's level. It is seen that, depending on material properties, concrete strength and steel yield stress, the failure hierarchy could be dominated by either brittle or ductile mechanisms.

춤이 깊은 고강도 철근콘크리트 보의 수평전단철근 효과에 관한 연구 (The Effects on Horizontal Web Reinforcements for Reinforced High Strength Concrete Deep Beams)

  • 신성우;성열영;안종문;이광수;박무용;김형준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.337-344
    • /
    • 1996
  • Reinforced concrete deep beams with conpressive strengths in the range of 500kg/$\textrm{cm}^3$~750kg/$\textrm{cm}^3$ were tested under two-point loding. All the beams were singly reinforced with main steel percent $\rho$=1.29% and with nominal percentage of vertical shear reinflrcements $\rho_v$=0.26%. According to shear-span to depth ratio a/d. The beams were tested for four horizontal shear reinforcement ratio $\rho_h$, ranging from$\rho_h$=0.0 to $\rho_h$=0.53. The results indicate that the horizontal shear reinforcements of beams have an effect on failure load and on ductile behavior of deep beams. The test results are compared with predictions based on the current ACI Building Code. The computated reports in the paper will have designers assured for design of high strength concrete deep beam. Though ACI Code is relatively conservative and tend to non-economical, ACI Code has the merit that is easy to use.

  • PDF

Seismic performance of non-ductile detailing RC frames: An experimental investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Pita, Panapa;Haryanto, Yanuar
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.485-498
    • /
    • 2020
  • Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam-column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.

섬유시트로 보강된 철근콘크리트 기둥의 압축강도 특성에 관한 실험적 연구 (An Experimental Study on the Compressive Strength Characteristics of Reinforced Concrete Columns Strengthened with Fiber Sheets)

  • 김정섭;최진석;조철희;고송균
    • 한국건축시공학회지
    • /
    • 제3권2호
    • /
    • pp.119-127
    • /
    • 2003
  • Test specimen test was performed using concrete reinforced with fiber sheet and the test variables were based on the kinds of fiber and the number of reinforcement layers. Using steel-concrete reinforced with fiber sheet, compression tests were performed and the test variables were the kinds of fiber, number reinforcement layers and reinforcement layer order. The following results were obtained: 1) It was demonstrated that compressive strength of the test specimen reinforced during test specimen test and member test increased as the number of reinforcement layers increased. 2) It was shown that non-reinforced test, specimen were destroyed during the member tests, but the specimen reinforced with CFS destroyed and the GFS-reinforced specimen and composite reinforced specimen showed ductile destruction. 3) As a result of tests on kinds of reinforcement fiber, it was demonstrated that CFS-reinforced test specimen had higher compressive strength in a 공시체 test. In the member test, 2ply-and 3ply-GFS reinforced specimens except lplied one had higher compressive strength. It was because partial destruction occurred due to the rate of height/section. 4) For layer strength order, compared with test specimen reinforced only with a single reinforced material, test specimen reinforced with CFS and GFS, and test specimen reinforced with CFS first showed better results in compressive strength and ductility judgement.

GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가 (Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars)

  • 정승배;양근혁
    • 한국건축시공학회지
    • /
    • 제17권5호
    • /
    • pp.403-409
    • /
    • 2017
  • 본 연구에서는 다공성 블록의 내구성 향상을 위해 압축강도 3MPa 및 공극률 30%를 만족하는 배합설계를 확인하였으며, 선정된 배합에서 GFRP 보강 방법에 따른 보의 내력 및 인성 증가를 평가하였다. 다공성 콘크리트의 목표성능 만족을 위해서는 골재입도 15~20mm에서 물-시멘트 비 및 시멘트-골재 비가 각각 25% 및 15%로 추천될 수 있었다. GFRP로 보강된 다공성 콘크리트 보의 거동은 전단파괴에 의해 지배되었다. 이에 따라 GFRP의 휨 저항 발휘는 매우 적었으며, GFRP 보강근의 장부작용에 의한 전단내력상승은 결과적으로 다공성 콘크리트 보의 하중 저항성과 인성을 향상시켰다. GFRP 보강근을 압축과 인장측에 각각 1본(D9)씩 배근한 경우 내력은 무보강 보에 비해 약 2.1배 증가하였으며, 인성지수 $I_{30}$값은 43.4를 보임으로서 인성지수 값을 측정할 수 없었던 무보강 보에 비해 상당히 향상되었다.

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas;Naida, Ademovic;Husain K., Jarallah
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.527-534
    • /
    • 2022
  • EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.