• 제목/요약/키워드: Non-dominated Solutions

검색결과 59건 처리시간 0.021초

Generation Rescheduling Based on Energy Margin Sensitivity for Transient Stability Enhancement

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Hwang, Kab-Ju;Song, Kyung-Bin;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents a generation rescheduling method for the enhancement of transient stability in power systems. The priority and the candidate generators for rescheduling are calculated by using the energy margin sensitivity. The generation rescheduling formulates the Lagrangian function with the fuel cost and emission such as NOx and SOx from power plants. The generation rescheduling searches for the solution that minimizes the Lagrangian function by using the Newton’s approach. While the Pareto optimum in the fuel cost and emission minimization has a drawback of finding a number of non-dominated solutions, the proposed approach can explore the non-inferior solutions of the multiobjective optimization problem more efficiently. The method proposed is applied to a 4-machine 6-bus system to demonstrate its effectiveness.

다목적 최적화를 위한 공생 진화알고리듬 (A Symbiotic Evolutionary Algorithm for Multi-objective Optimization)

  • 신경석;김여근
    • 한국경영과학회지
    • /
    • 제32권1호
    • /
    • pp.77-91
    • /
    • 2007
  • In this paper, we present a symbiotic evolutionary algorithm for multi-objective optimization. The goal in multi-objective evolutionary algorithms (MOEAs) is to find a set of well-distributed solutions close to the true Pareto optimal solutions. Most of the existing MOEAs operate one population that consists of individuals representing the entire solution to the problem. The proposed algorithm has a two-leveled structure. The structure is intended to improve the capability of searching diverse and food solutions. At the lower level there exist several populations, each of which represents a partial solution to the entire problem, and at the upper level there is one population whose individuals represent the entire solutions to the problem. The parallel search with partial solutions at the lower level and the Integrated search with entire solutions at the upper level are carried out simultaneously. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The optimization problems with continuous variables and discrete variables are used as test-bed problems. The experimental results confirm the effectiveness of the proposed algorithm.

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

Optimization of Data Placement using Principal Component Analysis based Pareto-optimal method for Multi-Cloud Storage Environment

  • Latha, V.L. Padma;Reddy, N. Sudhakar;Babu, A. Suresh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.248-256
    • /
    • 2021
  • Now that we're in the big data era, data has taken on a new significance as the storage capacity has exploded from trillion bytes to petabytes at breakneck pace. As the use of cloud computing expands and becomes more commonly accepted, several businesses and institutions are opting to store their requests and data there. Cloud storage's concept of a nearly infinite storage resource pool makes data storage and access scalable and readily available. The majority of them, on the other hand, favour a single cloud because of the simplicity and inexpensive storage costs it offers in the near run. Cloud-based data storage, on the other hand, has concerns such as vendor lock-in, privacy leakage and unavailability. With geographically dispersed cloud storage providers, multicloud storage can alleviate these dangers. One of the key challenges in this storage system is to arrange user data in a cost-effective and high-availability manner. A multicloud storage architecture is given in this study. Next, a multi-objective optimization problem is defined to minimise total costs and maximise data availability at the same time, which can be solved using a technique based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions known as the Pareto-optimal set.. When consumers can't pick from the Pareto-optimal set directly, a method based on Principal Component Analysis (PCA) is presented to find the best answer. To sum it all up, thorough tests based on a variety of real-world cloud storage scenarios have proven that the proposed method performs as expected.

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

아래 평판이 미소한 불균일 온도를 갖는 두 수평 평판 사이에서의 자연 대류 : Pr=0.7 (NATURAL CONVECTION BETWEEN TWO HORIZONTAL PLATES WITH SMALL MAGNITUDE NON-UNIFORM TEMPERATURE IN THE LOWER PLATE : Pr=0.7)

  • 유주식
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.35-40
    • /
    • 2013
  • Natural convection of air with Pr=0.7 between two horizontal plates with small magnitude non-uniform temperature distribution[${\in}{\Delta}Tsin({\kappa}X/H)$, H : gap width, X : horizontal coordinate] in the lower plate is numerically(${\in}=0.01$) investigated. In the conduction-dominated regime with $Ra{\leq}1700$, two upright cells are formed over one wave length($2{\pi}/{\kappa}$). For small wave number, the flow becomes unstable with increase of Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The flow patterns are classified by the number of eddies over one wave length. When ${\kappa}=1$, a transition of $2{\rightarrow}4{\rightarrow}6$ eddy flow occurs with increase of Rayleigh number, and no hysteresis phenomenon is observed. Dual and triple solutions are found for ${\kappa}=1$, and transitions of $10{\rightarrow}8$, $8{\rightarrow}6$, $6{\rightarrow}4{\rightarrow}2$ eddy flow occur with decrease of Rayleigh number.

Tree Structure Modeling and Genetic Algorithm-based Approach to Unequal-area Facility Layout Problem

  • Honiden, Terushige
    • Industrial Engineering and Management Systems
    • /
    • 제3권2호
    • /
    • pp.123-128
    • /
    • 2004
  • A tree structure model has been proposed for representing the unequal-area facility layout. Each facility has a different rectangular shape specified by its area and aspect ratio. In this layout problem, based on the assumption that the shop floor has enough space for laying out the facilities, no constraint is considered for a shop floor. Objectives are minimizing total part movement between facilities and total rectangular layout area where all facilities and dead spaces are enclosed. Using the genetic code corresponding to two kinds of information, facility sequence and branching positions in the tree structure model, a genetic algorithm has been applied for finding non-dominated solutions in the two-objective layout problem. We use three kinds of crossover (PMX, OX, CX) for the former part of the chromosome and one-point crossover for the latter part. Two kinds of layout problems have been tested by the proposed method. The results demonstrate that the presented algorithm is able to find good solutions in enough short time.

퍼지 기반 다기준 의사 결정을 이용한 휴머노이드 로봇 걸음새 계획기 (Humanoid Robot Footstep Planner with Fuzzy-Based Multi-Criteria Decision Making)

  • 이기백
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.441-447
    • /
    • 2015
  • This paper proposes a novel fuzzy-based multi-criteria decision making method and implements a footstep planner for humanoid robots with it. Humanoid robots require additional footstep planning process in addition to path planning for the autonomous navigation. Moreover, it is necessary to consider safety and energy consumption as well as path efficiency and multi-criteria decision making is indispensable. The proposed method can provide not only well- distributed and non-dominated, but also more preferable solutions for users. The planned footsteps by the proposed method were verified through simulation. The results indicate that the user's preference is properly reflected in optimized solutions maintaining solution quality.

벡터이득 대자연게임의 해법 (Methods for Solving the Game against Nature with Vector Payoffs)

  • 김여근
    • 한국국방경영분석학회지
    • /
    • 제9권2호
    • /
    • pp.61-68
    • /
    • 1983
  • The traditional theories of games are based on an assumption that the payoffs have a single dimension. In reality, any alternative is likely to imply more than one payoff. This paper deals with the game against nature with vector payoffs. The purpose of this paper is to develop methods for finding the practical optimal strategy in the game against nature with vector payoffs. Under the assumption that a prior probability over the stats of nature is given, this paper shows that a practical optimal strategy in this game can be obtained by applying a entropy method in order to assess the payoff weight and by employing the concept of compromise solutions in order to reduce the non-dominated solutions. When subjective payoff weights are unknown as well as known, these methods can be used. A numerical example is given.

  • PDF