• Title/Summary/Keyword: Non-dimensional Temperature

Search Result 262, Processing Time 0.021 seconds

The Effect of Fin Tip on the Triangular Fin (삼각핀에 대한 핀끝의 영향)

  • Kang, Hyung Suk
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.81-87
    • /
    • 1993
  • Two dimensional analysis on the triangular fin for both the insulated fin tip and non-insulated fin tip and one dimensional analysis on that when the temperature of the fin tip is finite are made. The effect of the fin tip is shown by comparing the heat loss from the fin and the temperature along the fin length varing the non-dimensional fin length and Biot number for each three cases. The results are following. When the non-dimensional fin length is very short, the relative error of the heat loss from the fin with insulated fin tip to that from the fin with non-insulated fin tip is very high. The value of the temperature variation along the non-dimensional fin length is minimum for the finite fin tip temperature using one dimensional analysis and is maximum for the insulated fin tip using two dimensional anaysis.

  • PDF

평면 연삭 가공시 발생하는 연삭열에 관한 연구 -해석적 모델-

  • Kim, Dong-Kil;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.187-194
    • /
    • 2001
  • The objective of this study is to develop a model for the grinding process for predicting the temperature, thermal stress and thermal deformation. The thermal load during grinding is modeled as uniformly distributed, 2D heat source moving across the surface of elastic half space, which is insulated or subjected to convective cooling. That non-dimensional temperature distribution, non-dimensional longitudinal stress distribution and non-dimensional thermal deformation distribution are calculated with non-dimensional heat source half width and non-dimensional heat transfer coefficient. Finite element models are developed to simulate moving heat source, which is modeled as uniformly or triangularly distributed, the FEM simulation is compared with numerical solution.

  • PDF

Errors in One-Dimensional Heat Transfer Analysis in a Hollow Cylinder Feedwater Pipe (속이 빈 원관에서 1차원적인 열전달 해석의 오차)

  • Gang, Hyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.689-696
    • /
    • 1996
  • A comparison is made of the heat loss from a hollow cylinder, computed using an one-dimensional analytic method and a two-dimensional separation of variables scheme. For a two-dimensional analysis, the temperature of the inner surface as a boundary condition can be varied along the length of the cylinder by varing the temperature variation factor, b. Comparisons of the heat loss from the hollow cylinder using these two methods are given as a function of non-dimensional cylinder length, the ratio of the outer radius to the inner radius, temperature variation factor and Biot number. The result shows that the value of the heat loss from the hollow cylinder obtained using the one-dimensional analytic method becomes close to the value given by the two-dimensional separation of variables scheme as the value of Biot number and the non-dimensional hollow cylinder length increase and as the ratio of the outer radius to the inner radius decreases.

Properties of the Frost Layer Formed on a Cold Flat Surface (냉각평판에 형성된 서리층의 물성치)

  • Kim, Sung-Gone;Yang, Dong-Keun;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.374-380
    • /
    • 2003
  • This paper proposes dimensionless correlations predicting properties of the frost layer formed on a cold flat surface. Experiments are carried out to obtain the correlations with various environmental parameters such as air temperature, air velocity, absolute humidity, and cooling plate temperature. As a result, the frost properties (frost layer thickness, density, surface temperature, thermal conductivity) are correlated as a function of Reynolds number, Fourier number, absolute humidity and non-dimensional temperature by using a dimensional analysis. The correlations agree well with the previous and our experimental data within a maximum error of 10%, and are used to predict the frost properties in the following ranges: Reynolds number of 20216 to 53763, Fourier number of 0.1962 to 2.5128, absolute humidity of 3.22 to 8.47, and non-dimensional temperature of 0.125 to 0.5.

Performance Analysis of the Rectangular Fin (사각 휜에 대한 성능해석)

  • Gang, Hyeong-Seok;Yun, Se-Chang;Lee, Seong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Performance of a rectangular fin is investigated by a three dimensional analytical method. Heat loss and the temperature obtained from the three dimensional analysis are compared with those calculated from a two dimensional analysis. Fin effectiveness, fin resistance and fin efficiency for the rectangular fin are presented as a function of non-dimensional fin length and fin width. The results are obtained in the following : (1) heat loss calculated from the two dimensional analysis is the same as that obtained from the three dimensional analysis with adiabatic boundary condition in z-direction, (2) heat loss obtained from the two dimensional analysis approaches the value for the three dimensional analysis as the non-dimensional fin width becomes large, (3) fin effectiveness increases as non-dimensional fin length increases and non-dimensional fin width decreases, and vice versa for fin efficiency.

Conjugated heat transfer on convection heat transfer from a circular tube in cross flow (원관 주위의 대류 열전달에 대한 복합 열전달)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

A Study on Flow Rate Characteristics of a Triangular Separate Bar Differential Pressure Flow Meter according to the Variation of Gas Flow Temperature (유동 가스 온도 변화에 따른 삼각 분리 막대형 차압 유량계 유량 특성에 관한 연구)

  • Kim, Kwang-Il;Yoo, Won-Yuel;Lee, Choong-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.89-94
    • /
    • 2008
  • Differential pressure flow meters which have a shape of triangular separate bar(TSB) were tested for investigating the flow rate characteristics of the flow meters with varying the temperature of the gas flow. Three kinds of the triangular separate bar flow meters whose aerodynamic angles are different one another are used. The mass flow rate of the flow meters are evaluated using a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. A burner system which is similar to gas turbine was used for raising the gas flow temperature. The burner system was operated with varying the air/fuel ratio by controlling both the fuel injection rate from the fuel nozzle and air flow rate from a blower. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter was obtained. The empirical correlation showed linear relationship between the mass flow rate and the non-dimensional parameter H. Also, the mass flow rate characteristics at the TSB flow meter was affected by the gas temperature.

Water Freezing Behavior in a Rectangular Vessel Cooled from Below Direction (사각형 용기내 물의 하부면 냉각에 의한 동결거동에 관한 연구)

  • Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • This study has dealt with the ice making characteristics in a rectangular vessel cooled from below direction with experiment and numerical analysis. The experiment and numerical analysis were carried out under the following conditions which are the cooling wall temperatures of -5[$^{\circ}C$], -10[$^{\circ}C$], and -15[$^{\circ}C$]. The temperature profile of non-frozen layer was calculated by numerical analysis as the form of non-dimensional temperature. From this study, it is cleared that the existence of natural convection is clearly known. And also the non-dimensional freezing amount was derived from experimental result. This correlation equation will give a useful information to the designers of ice making system.

Effect of Operating Conditions of a Fan-Coil Unit with an Oval Tube Type Heat Exchanger on Non-Dimensional Performance Coefficient (타원관 열교환기를 적용한 팬코일 유닛의 운전 조건이 무차원 성능계수에 미치는 영향)

  • Yoon, Jaedong;Lee, Younghoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effect of operating conditions of fan-coil unit with an oval tube type heat exchanger on its non-dimensional performance coefficient has been investigated. Pressure drops and heat transfer rates were measured under heating condition for various water flow rates, inlet temperatures and wind speeds. As a non-dimensional performance coefficient, Colburn j-factor was evaluated. The results show that the most sensitive parameter on heat flux is the inlet temperature, which affects the heat flux 4.7 and 7.2 times more than the wind speed and water flow rate, respectively. On the other hand, the Colburn j-factor as a non-dimensionalized index decreases with the wind speed, and has an maximum when the wind speed is about 1 m/s. the Colburn j-factor increases slowly with the water flow rate and inlet temperature but at a certain range of inlet temperature, the opposite phenomenon is found.

A Heat Transfer Analysis of a Thermally Asymmetric Triangular Fin; Based on Fin Tip Effect (열적 비대칭 삼각 핀의 열전달 해석; 핀 끝 효과에 기준)

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.21-26
    • /
    • 2002
  • The non-dimensional heat loss from a thermally asymmetric triangular fin is investigated as a function of a ratio of upper and lower surface Biot numbers (Bi2/Bi1), the non-dimensional fin length and tip surface Biot number using the two-dimensional separation of variables method. The effect of fin tip surface Biot number on the variation of the non-dimensional temperature along the sloped upper and lower surfaces for the thermally asymmetric condition is presented. The relationship between the non-dimensional fin length and the fin tip surface Biot number for equal amount of heat loss is also discussed as well as the relationship between upper surface Biot number and tip surface Biot number for equal amount of heat loss.

  • PDF