• 제목/요약/키워드: Non-dimensional

검색결과 2,866건 처리시간 0.028초

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

Nonlinear bending analysis of functionally graded CNT-reinforced composite plates

  • Cho, Jin-Rae
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.23-32
    • /
    • 2022
  • In this paper, a nonlinear numerical method to solve the large deflection problem is introduced. And the non-dimensional load-deflection behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is parametrically investigated. The large deflection problem is formulated according to the von Kármán nonlinear theory and the (1,1,0)* hierarchical model, and it is approximated by 2-D natural element method (NEM). The shear locking phenomenon is suppressed by the selectively reduced integration method. The nonlinear matrix equations are solved by combining the incremental loading scheme and the Newton-Raphson iteration method. The proposed method is validated from the benchmark experiments, where the propose method shows an excellent agreement with the reference methods. The nonlinear behavior of FG-CNTRC plates is evaluated in terms of the non-dimensional load-deflection curve, and it is parametrically investigated with respect to the existence/non-existence and gradient pattern of CNTs, the width-to-thickness and aspect ratios of plates and the type of boundary conditions. The non-dimensional central deflection is significantly reduced when CNTs and added, and it decreases with the volume fraction of CNTs. But, it shows a uniform increase in proportion to the width-to-thickness and aspect ratios. Both the gradient pattern of CNTs and the type of boundary conditions do also show the remarkable effects.

GENERALIZED VECTOR VARIATIONAL-LIKE INEQUALITIES WITH CORRESPONDING NON-SMOOTH VECTOR OPTIMIZATION PROBLEMS

  • Lee, Byung-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권2호
    • /
    • pp.203-207
    • /
    • 2008
  • In [1], Mishra and Wang established relationships between vector variational-like inequality problems and non-smooth vector optimization problems under non-smooth invexity in finite-dimensional spaces. In this paper, we generalize recent results of Mishra and Wang to infinite-dimensional case.

  • PDF

전자기 유도 방식을 이용한 비접촉식 2차원 위치 센서 (A Non-contact Two-Dimensional Position Sensing Device Using Electromagnetic Induction)

  • 유영기;고국원;김학수
    • 한국정밀공학회지
    • /
    • 제29권11호
    • /
    • pp.1159-1163
    • /
    • 2012
  • In this paper, we would like to introduce two dimensional non-contact position sensor by using an electromagnetic induction based coil system and an algorithm to estimate the position of pointer. The sensor which will introduce in this paper is composed of a pointer including LC resonant circuit and a sensor board to detect the electromagnetic signal from the pointer. Because of the simplicity shape of the line antenna, low cost and free form curved shape of the sensor device is possible. In this research, we proposed a new two dimensional non-contact type electromagnetic sensor system and realized the proposed sensor device. From the experiments, the proposed device can be employed for the two dimensional position sensor.

열적 비대칭 삼각 휜의 성능해석 (Performance Analysis of a Thermally Asymmetric Triangular Fin)

  • 강형석
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.66-73
    • /
    • 2002
  • Fin effectiveness and efficiency of a thermally asymmetric triangular fin are represented as a function of the ratio of fin lower surface Biot number to upper surface Biot number and the non-dimensional fin length. For this analysis, two dimensional separation of variables method is used. When fin effectiveness is 2 and efficiency is 90%, the relationship between the non-dimensional fin length and the ratio of fin lower stir(ace Biot number to upper surface Biot number is shown. The relationship between the non-dimensional fin length and the upper surface Biot number for the same condition is also presented.

원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향 (Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow)

  • 이상봉;이억수;김시영
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

강내탄도의 약실 내 추진제 모델링 비교연구 (Comparative Study of Propellant Modeling in Chamber of Interior Ballistic)

  • 장진성;성형건;노태성;최동환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.668-671
    • /
    • 2010
  • 무차원 추진제 모델링 기법과 1차원 추진제 모델링 기법을 사용하여 약실 내 추진제 모델링 기법에 대한 비교 연구를 수행하였다. 무차원 추진제 모델링의 경우 약실 내 추진제 위치 및 배열에 대한 묘사가 불가능 하지만 1차원 추진제 모델링의 경우에는 가능하다. 따라서 약실 내 추진제 배열에 따른 강내탄도 성능해석 시 무차원 추진제 모델링의 경우 강내 마이너스 차압의 예측이 불가능하지만 1차원 추진제 모델링의 경우 예측이 가능함을 확인했으며, 이를 통해 강내탄도 성능해석 시 1차원 추진제 모델링의 필요성을 확인했다.

  • PDF

Piezoelectric 6-dimensional accelerometer cross coupling compensation algorithm based on two-stage calibration

  • Dengzhuo Zhang;Min Li;Tongbao Zhu;Lan Qin;Jingcheng Liu;Jun Liu
    • Smart Structures and Systems
    • /
    • 제32권2호
    • /
    • pp.101-109
    • /
    • 2023
  • In order to improve the measurement accuracy of the 6-dimensional accelerometer, the cross coupling compensation method of the accelerometer needs to be studied. In this paper, the non-linear error caused by cross coupling of piezoelectric six-dimensional accelerometer is compensated online. The cross coupling filter is obtained by analyzing the cross coupling principle of a piezoelectric six-dimensional accelerometer. Linear and non-linear fitting methods are designed. A two-level calibration hybrid compensation algorithm is proposed. An experimental prototype of a piezoelectric six-dimensional accelerometer is fabricated. Calibration and test experiments of accelerometer were carried out. The measured results show that the average non-linearity of the proposed algorithm is 2.2628% lower than that of the least square method, the solution time is 0.019382 seconds, and the proposed algorithm can realize the real-time measurement in six dimensions while improving the measurement accuracy. The proposed algorithm combines real-time and high precision. The research results provide theoretical and technical support for the calibration method and online compensation technology of the 6-dimensional accelerometer.

LINAC을 이용한 뇌정위적 방사선 수술에 대한 3 차원 선량분포 (Three-Dimensional Dose Distribution for the System of Linear Accelerator-based Stereotactic Radiosurgery)

  • Suh, Tae-Suk
    • 한국의학물리학회지:의학물리
    • /
    • 제2권2호
    • /
    • pp.121-128
    • /
    • 1991
  • 뇌정위적 방사선 수술 시 정확한 3차원적 선량분포에 대한 정보가 필요한다. 3차원적 치료계획은 최적선량분포를 얻기위한 것이며 환자 데이타, 선량분포, 방사선 조사 요소들에 대한 3차원적인 관계를 다루어야만 한다. 원형 조사면에 대한 single 조사면 선량 데이타와 3차원 선량 알고리듬을 이용하여 non-coplanar moving arcs 에 대한 3차원적 선량모델이 개발되었다. 뇌정위적 방사선 수술시 3차원 선량 알고리듬의 적용과 여러경우에 대한 응용에 대하여 논의되어진다.

  • PDF

一定加速度 의 移動荷重 이 作용하는 連續보 의 振動特性 (Vibration Characteristics of Continuous Beams Due to the Moving Loads with Constant Accelerations)

  • 김찬묵;김광식
    • 대한기계학회논문집
    • /
    • 제6권4호
    • /
    • pp.323-330
    • /
    • 1982
  • The vibration characteristics of continuous span periodically supported beams with moving loads are determined theoretically and experimentally. Moving loads are assumed to travel at constant acceleration with constant magnitude. Analyses by using the Fourier Transform technique are developed to determine the dynamic performance of moving load interacting with multiple and continuous beam. Equation of motion for the moving load is non-dimensionalized. Non-dimensional deflection proflies of continuous beam are presented in detail for the single concentrated moving load with constant acceleration. Experimental moving load and continuous beam models are developed. The maximum deflections at each midpoints 5,7 and 9 span beam are measured and their non-dimensional maximum deflections are presented. The non-dimensional maximum deflection of continuous beam is compared with measured maximum deflection of 9 span beam and found to agree reasonably well. The deflection of continuous beam due to moving load with acceleration is strongly influenced in the resonance region.