• 제목/요약/키워드: Non-destructive evaluation

검색결과 425건 처리시간 0.026초

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF

Advanced Indentation System을 이용한 천연가스배관 용접열영향부의 응력-변형률 변화 특성 분석 (Evaluation of Stress-Strain Characteristics of Weldment in Natural Gas Pipeline Using Advanced Indentation System)

  • 장재일;손동일;권동일;김우식;박주승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.483-488
    • /
    • 2001
  • Until now, the tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards such as ASTM (American Society for Testing and Materials) standard and BS (British Standard). For some cases including on-service facility materials, however, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using AIS (advanced indentation system) and its application fields are reviewed and discussed.

  • PDF

비파괴 시험방법을 이용한 원목 내부결함 예측 및 분류의 계량화(計量化)에 관한 연구 (I) - 원목의 횡단방향을 중심으로 - (Study on Mensurability of Internal Defect Prediction and of Classification of Log by NDE(Non-Destructive Evaluation) (I) - Focused on Cross Direction of Log -)

  • 박헌;강은창;전성진;윤경섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.47-54
    • /
    • 1995
  • This study was to measure the properties of logs and classify them by non-destructive methods. The purpose of this experiment was focused at mensurability of logs by non-destructive methods. The non-destructive instrument, Stress-Wave Timer 239A which was made by Metriguard in U.S.A., was used. The stress wave velocities of log's cross direction were measured and compared with three different methods; 1. with hammer, 2. with hammer and D.B.H. meter, 3. with manufactured instrument. Number of used logs were seven logs, which were classified by naked eye into six groups; very severe rot, severe rot, mild rot & knot, mild rot & check, mild rot, sound log, and in diameter were into three groups; large(57.4cm), medium(36~41.2cm), small(28.9cm) log. The results, which were classified by mensurability with non-destructive methods, were followed; 1. The stress wave velocities were very different between rot and sound log. So it meant the possibility of mensurability of logs by non-destructive method even if high standard error. 2. The stress wave velocities decreased with checks more than with rots, which meant the checks affected speeds more. 3. The stress wave velocities increased with knot. 4. The velocities with manufactured instrument showed lower standard error, so more accurate results than other methods. Especially the required labour decreased from 3~4 to 2 persons. 5. Finally, the mensurability showed more accurate results and made the classification of logs scientific.

  • PDF

ON PREDCTION OF CONCENTRATION OF LIQUID FOOD BY ACOUSTIC NON-LINEAR PARAMETER B/A

  • Nishizu, Takahisa;Ikeda, Yoshio
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.344-352
    • /
    • 1993
  • The purpose of this study is to investigate the possibility of the non-destructive quality evaluation for food by the acoustic non-linear parameter B/A which is a measure of the non-linearity of the state equation of the medium in terms of pressure and density. The B/A of water, corn oil O/W(oil in water) emulsion and milk were measured by using a sound velocity measuring system. The B/A value of water was measured for ascertaining reliability of our experimental system. Corn oil W/W emulsion was prepared as a model of milk . It was proved that the B/A value of O/W emulsion was related to the oil concentration by a law of mixture. We applied this result to milk and obtained satisfactory results for predicting the milk fat concentration.

  • PDF

노출 환경에 따른 목조 고건축물 기둥의 열화 차이 (Difference of Deterioration According to Exposed Condition of Column in Wooden Traditional Building)

  • 김광철;배문성;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권2호
    • /
    • pp.58-68
    • /
    • 2003
  • 목조 고건축물의 안전성 평가를 위해서는 먼저 부재의 성능평가가 선행되어야 한다. 지금까지의 목재 부재의 성능평가는 육안에 의한 경험적 방법에 의존하였다. 하지만 과학적이고 합리적인 비파괴 방법을 적용하여 구조부재의 성능을 평가할 수 있다면 구조물의 안전성 해석은 더욱 정확해지고 합리적이 될 것이다. 이를 위해 본 연구에서는 목조 고건축물의 여러 구조 부재 중 기둥에 대해 비파괴 평가법을 적용하여 구조부재의 성능 평가에 대한 가능성을 알아보았다. 이 결과를 이어지는 연구에서 구조물의 안전성 해석의 기초자료로 사용할 예정이다. 특별히 기둥의 노출 환경에 따른 열화의 진행정도를 비파괴 평가법으로 측정하였다. 그 결과 실제 육안에 의한 열화의 관찰과 유사한 결과를 나타내어 비파괴 방법의 적용 가능성을 보여주었다.

구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용 (Laser-Ultrasonics Application for Non-Contact and Non-destructive Evaluation of Structure)

  • 김재열;송경석;양동조
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.49-54
    • /
    • 2005
  • Measuring defects on the inside and on the surface of a steel structure is very important technology in order to predict the life span of the structure. In particular, a place with a high probability that it may contain defects is a welded part and it is very important to check defects in the part, absence/presence of non-uniform substances, its shape, and the location. Many non-destructive tests can be applied, but the ultrasonic flow detection test is widely used with some advantages. The ultrasonic flow detection test, however, cannot be applied when there is a problem by a contact medium between PZT and a specimen, in case of a small and complicated shape or a moving object or when the specimen is hot. In this study, to solve the problems of the contact ultrasonic flow detection test, the non-contact ultrasonic flow detection test for sending/receiving ultrasonic waves using lasers was described. I intended to develop a non-destructive detection system applying the laser application ultrasonic test to a steel structure by detecting the defects inside of and on the surface of the specimen.

Effect of hygrothermal aging on GFRP composites in marine environment

  • Garg, Mohit;Sharma, Shruti;Sharma, Sandeep;Mehta, Rajeev
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.93-104
    • /
    • 2017
  • In the present work, the effect of hygrothermal aging on the glass fibre and epoxy matrix interface has been investigated by destructive and non-destructive techniques. The glass fiber reinforced polymer (GFRP) composite laminates were prepared using Vacuum Assisted Resin Infusion Molding (VARIM) technique and the specimens were immersed in simulated seawater, followed by quantitative measurement. Besides this, the tensile tests of GFRP specimens revealed a general decrease in the properties with increasing aging time. Also, exposed specimens were characterized by a non-destructive ultrasonic guided Lamb wave propagation technique. The experimental results demonstrate a correlation between the drop in ultrasonic voltage amplitude and fall in tensile strength with increasing time of immersion. Hence, the comparison of the transmitted guided wave signal of healthy vis-a-vis specimens subjected to different extents of hygrothermal aging facilitated performance evaluation of GFRP composites.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

다변량 로지스틱 회귀분석을 이용한 증기발생기 전열관 ODSCC의 POD곡면 분석 (Evaluation of the Probability of Detection Surface for ODSCC in Steam Generator Tubes Using Multivariate Logistic Regression)

  • 이재봉;박재학;김홍덕;정한섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.250-255
    • /
    • 2007
  • Steam generator tubes play an important role in safety because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. For this reason, the integrity of the tubes is essential in minimizing the leakage possibility of radioactive water. The integrity of the tubes is evaluated based on NDE (non-destructive evaluation) inspection results. Especially ECT (eddy current test) method is usually used for detecting the flaws in steam generator tubes. However, detection capacity of the NDE is not perfect and all of the "real flaws" which actually existing in steam generator tunes is not known by NDE results. Therefore reliability of NDE system is one of the essential parts in assessing the integrity of steam generators. In this study POD (probability of detection) of ECT system for ODSCC in steam generator tubes is evaluated using multivariate logistic regression. The cracked tube specimens are made using the withdrawn steam generator tubes. Therefore the cracks are not artificial but real. Using the multivariate logistic regression method, continuous POD surfaces are evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive evaluation of the cracked tubes. Length and depth of cracks are considered in multivariate logistic regression and their effects on detection capacity are evaluated.

  • PDF

비파괴검사에 의한 A2024 마찰교반용접부의 건전성 평가 (Soundness evaluation of friction stir welded A2024 alloy by non-destructive test)

  • 고영봉;김기범;박경채
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.135-143
    • /
    • 2013
  • 마찰교반용접은 운송 분야 등에서 널리 상업화되고 있다. 본 연구는 마찰교반용접된 A2024-T4 합금의 결함을 비파괴검사(방사선투과검사, 초음파탐상시험, 전기전도도시험)와 파괴시험(인장강도 및 미세조직 관찰)을 실시하여 관찰하였다. 실험 결과 결함 분포도를 얻을 수 있었다. 방사선투과검사에서 발견되지 않은 미세결함이 초음파탐상시험에서는 발견되었으며, 초음파탐상시험은 음압의 차이와 그에 대응하는 색에 의해 결함의 정도를 검사할 수 있는 효과적인 방법이었다. 또한 전기전도도 측정값은 결함의 양이 많아짐에 따라 감소하는 경향을 보였다. 비파괴검사와 파괴검사를 통해 얻은 가장 건전한 조건의 이음 효율은 91% 이었다. 따라서 비파괴검사는 마찰교반용접된 A2024-T4 합금을 검사하는데 있어서 효과적인 방법이라 사료된다.