• Title/Summary/Keyword: Non-contact input system

Search Result 26, Processing Time 0.026 seconds

Development of a Non-contact Input System Based on User's Gaze-Tracking and Analysis of Input Factors

  • Jiyoung LIM;Seonjae LEE;Junbeom KIM;Yunseo KIM;Hae-Duck Joshua JEONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • As mobile devices such as smartphones, tablets, and kiosks become increasingly prevalent, there is growing interest in developing alternative input systems in addition to traditional tools such as keyboards and mouses. Many people use their own bodies as a pointer to enter simple information on a mobile device. However, methods using the body have limitations due to psychological factors that make the contact method unstable, especially during a pandemic, and the risk of shoulder surfing attacks. To overcome these limitations, we propose a simple information input system that utilizes gaze-tracking technology to input passwords and control web surfing using only non-contact gaze. Our proposed system is designed to recognize information input when the user stares at a specific location on the screen in real-time, using intelligent gaze-tracking technology. We present an analysis of the relationship between the gaze input box, gaze time, and average input time, and report experimental results on the effects of varying the size of the gaze input box and gaze time required to achieve 100% accuracy in inputting information. Through this paper, we demonstrate the effectiveness of our system in mitigating the challenges of contact-based input methods, and providing a non-contact alternative that is both secure and convenient.

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Design of a Heart Rate Measurement System Using a Web Camera

  • Jang, Seung-Ju
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.179-186
    • /
    • 2022
  • In this paper, we design a heart rate measurement system using a web camera. In order to measure the heart rate, face image information is acquired and classified. The face image data is collected from web camera. The heart rate is measured using the collected face image data. We design a function to measure heart rate using input of face information using a web camera in non-contact manner. We design a function that reads face information and estimates heart rate by analyzing face color. An experiment was performed to compare the non-contact heart rate with the actual measured heart rate. The heart rate measurement system using a web camera proposed in this paper is a technology that can be used in various fields. It will be used in sports fields that require heart rate measurement at a low cost.

Implementation of Wireless ECG Measurement System Attaching in Chair for Ubiquitous Health Care Environment (유비쿼터스 헬스 케어 적용을 위한 의자 부착형 무선 심전도 측정 시스템 구현)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Jee-Chul;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.776-781
    • /
    • 2008
  • In this study, ubiquitous health care system attaching in chair to monitor ECG for health care was developed at the unconsciousness state. The system conveniently and simple measured ECG at non-consciousness. We measured the contact impedance to skin-electrode of metal mesh electrodes of the system. Contact impedance enable the electrode to use for ECG measurement. The results are that the impedance of the metal mesh electrodes according to sizes is low when the size is 4$cm^2$. As the result, when the size of the metal mesh electrode is 4$cm^2$, the electrode is fit for ECG measurement. We can acquired by positing the arm on the metal mesh electrode. The ECG signal was detected using a high-input-impedance bio-amplifier, and then passed filter circuitry. The measured signal transmitted to a PC through the bluetooth wireless communication and monitored. Data of the non-constrained ECG system attaching in chair is noise-data when comparing metal mesh electrode with the Ag/Agcl electrode but the data is significant to monitor ECG for check the body state.

Non-contact Input Method based on Face Recognition and Pyautogui Mouse Control (얼굴 인식과 Pyautogui 마우스 제어 기반의 비접촉식 입력 기법)

  • Park, Sung-jin;Shin, Ye-eun;Lee, Byung-joon;Oh, Ha-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1279-1292
    • /
    • 2022
  • This study proposes a non-contact input method based on face recognition and Pyautogui mouse control as a system that can help users who have difficulty using input devices such as conventional mouse due to physical discomfort. This study includes features that help web surfing more conveniently, especially screen zoom, scroll function, and also solves the problem of eye fatigue, which has been suggested as a limitation in existing non-contact input systems. In addition, various set values can be adjusted in consideration of individual physical differences and Internet usage habits. Furthermore, no high-performance CPU or GPU environment is required, and no separate tracker devices or high-performance cameras are required. Through these studies, we intended to contribute to the realization of barrier-free access by increasing the web accessibility of the disabled and the elderly who find it difficult to use web content.

Radiant Energy Filtering to Enhance High Temperature Measurement by a Thermography System (고온 계측 열화상 시스템 구현을 위한 복사에너지 필터링 연구)

  • Yoon, Seok Tae;Cho, Yong Jin;Jung, Ho Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.466-473
    • /
    • 2016
  • In a shipbuilding process, thermal damage to the ship structure at the rear end results from an excessive heat input and conduction during welding process. To prevent such damage, appropriate control of the heat input, based on welding temperature measurement, is required. For temperature measurement, contact and non-contact methods are available; the thermography system is a popular non-contact temperature measurement. When the intensity of radiation from a high-temperature object is excessive, however, detecting the sensors of ordinary thermography systems leads to an inability in measuring the temperature due to saturation. Hence, this study suggests use of a neutral density filter that prevents an excessive amount of radiation from being accumulated in a thermography system, and thus makes it possible to quantitatively measure an object's temperature as high as $3000^{\circ}C$.

Non-Contact Line-of-sight Detection using Color Contact Lens for Man-Machine Interface

  • Nishiuchi, Nobuyuki;Kurihara, Kenzo;Takada, Hajime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.391-394
    • /
    • 1998
  • The man-machine interface Is an important factor in the computer system, and it is thought that line-of-sight (LOS) detection technology will allow significant advances in this field. Techniques for detecting LOS for use in human interfaces have been studied[1][2]. In earlier studies, however, LOS was detected with a head piece, goggles, or through fixing the position of the head. The limitations imposed by these fixed conditions render them unsuitable far use in interfaces, as they have adverse mental or physical effects on humans. Therefore. they have not been sufficiently developed for practical application. Research on non-contact LOS detection is expected to result in a usable LOS man-machine interface[3][4], and the current study is intended to be a step in that direction. The authors used color contact lenses for LOS detection, and applied this new method to a computer interface. The use of color contact lenses simplifies image processing. The algorithm used in this study is sufficiently accurate for practical applications. This technique can be used in input devices, in virtual reality applications, and in human engineering research.

  • PDF

An Inductive Position Sensor for Self-sensing Magnetic Suspension System (셀프센싱 자기 부상계를 위한 인덕턴스형 변위센서)

  • 윤형진;이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1038-1041
    • /
    • 2003
  • The magnetic suspension system is used in many areas, because it has great advantages. such as no friction, no noise, no lubrication and so on, but it is a unstable system in natural. It must have a feedback control with the position is measured for a stable levitation. There are an eddy-current sensor, a capacitive sensor, an inductive sensor, and an optical sensor with a laser as the sensor which measures displacements without contact. Among them, an inductive sensor is made with lower price than others. And it has a good linearity. In this paper, a magnetic circuit leads a linear equation between an input as a displacement and an output as a voltage. Experiments establish that voltage change according to displacement is linear. This paper presents the preliminary study of an inductive position sensing for self-sensing magnetic suspension system.

  • PDF

A Levitation Controller Design for a Magnetic Levitation System (자기부상 시스템의 부상제어기 설계)

  • 김종문;강도현;박민국;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.

A study on the liquefaction risk in seismic design of foundations

  • Ardeshiri-Lajimi, Saeid;Yazdani, Mahmoud;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.805-820
    • /
    • 2016
  • A fully coupled non-linear effective stress response finite difference (FD) model is built to survey the counter-intuitive recent findings on the reliance of pore water pressure ratio on foundation contact pressure. Two alternative design scenarios for a benchmark problem are explored and contrasted in the light of construction emission rates using the EFFC-DFI methodology. A strain-hardening effective stress plasticity model is adopted to simulate the dynamic loading. A combination of input motions, contact pressure, initial vertical total pressure and distance to foundation centreline are employed, as model variables, to further investigate the control of permanent and variable actions on the residual pore pressure ratio. The model is verified against the Ghosh and Madabhushi high acceleration field test database. The outputs of this work are aimed to improve the current computer-aided seismic foundation design that relies on ground's packing state and consistency. The results confirm that on seismic excitation of shallow foundations, the likelihood of effective stress loss is greater in deeper depths and across free field. For the benchmark problem, adopting a shallow foundation system instead of piled foundation benefitted in a 75% less emission rate, a marked proportion of which is owed to reduced materials and haulage carbon cost.