• Title/Summary/Keyword: Non-contact Modal Testing

Search Result 6, Processing Time 0.023 seconds

Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches (자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅)

  • Park, Chan-Il;Han, Soon-Woo;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.293-298
    • /
    • 2008
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an Inconel pipe being used in nuclear power plants.

Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches (자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅)

  • Park, Chan-Il;Han, Soon-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1343-1347
    • /
    • 2006
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an inconel pipe being used in nuclear power plants.

  • PDF

A new magnetic sensor for the non-contact measurement of bending vibrations of non-ferromagnetic pipes (비자성 배관의 비접촉 굽힘 진동 측정을 위한 자기 센서의 개발)

  • Han, Soon-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1154-1158
    • /
    • 2006
  • This investigation suggests a new non-contact type sensor that can measure flexural vibrations of a non-ferromagnetic pipe. The sensor works on the reversed Lorentz force mechanism; however, anti-symmetric bias magnetic field suggested in this work should be applied to measure bending vibration of a non-ferromagnetic pipe. The importance of the suggested magnetic field is verified by a series of experiments. The sensor is applied to the bending vibration measurement and modal testing of an aluminum pipe and shows satisfactory working performance compared to others.

  • PDF

Moan Noise Analysis of Rear Disc Brake (후륜 디스크 브레이크 Moan 노이즈 해석)

  • 박진국;김찬중;이봉현;정호일;문창룡;김정락;이충렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.607-612
    • /
    • 2004
  • Disc brake noise continues to be a major concern throughout the automotive industry despite efforts to reduce its occurrence. Eliminating vibrations during braking is an important task for both vehicle passenger comfort and reducing the overall environmental noise levels. There are several classes of disc brake noise, the major ones being squeal, judder, groan, and moan. In this study, analytical model for moan noise of rear disk brake is investigated. Modeling of the disc brake assembly to take account of the effect of different geometrical and contact parameters is studied through the use of multi-body model. The contact stiffness of the caliper and torque member plays an important role in controlling brake vibration. Therefore, a suitable material pair at the caliper/body contact has been made. An ADAMS model of a rear disc brake system was integrated with a flexible suspension trailng arm from MSC/NASTRAN. A fully non-linear dynamic simulatin of brake system behavior, containing rigid and flexible bodies, was performed for a Prescribed set of operating conditions. Simulation results were validated using data from vehicle experimental testing.

  • PDF

A Study on the Measurement of Vibration Mode Shape using Holographic interferometry (홀로그래픽 간섭법을 이용한 진동모드의 계측에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.130-135
    • /
    • 2000
  • In this study the vibration behavior of the stiffened double cylinder was experimently analyzed. Due to the complex structure of the double cylinder the outside cylinder frequency responses to the exciting forces applied on various posi-tions were analyzed by using spectrum analyzer in conjunction with an accelerometer and the natural frequencies were obtained. The technique of time-averaged holographic interferometry is applied to study the vibration characteristics of outside cylinder with stiffening T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. however the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. However the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame seemed to behave as a transmitter. In addition it has been successfully demon-started that optical method such as holographic interferometry is well suited for the identification of mode shapes. They can give us a whole-field non-contact measurement instead of the point-wise measurement by accelerometer in classical modal testing.

  • PDF

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.