• Title/Summary/Keyword: Non-conductive paste

Search Result 23, Processing Time 0.024 seconds

Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding (플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법)

  • Min, Kyung-Eun;Lee, Jun-Sik;Lee, So-Jeong;Yi, Sung;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.

Effects of Silica Filler and Diluent on Material Properties of Non-Conductive Pastes and Thermal Cycling Reliability of Flip Chip Assembly

  • Jang, Kyung-Woon;Kwon, Woon-Seong;Yim, Myung-Jin;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.9-17
    • /
    • 2003
  • In this paper, thermo-mechanical and rheological properties of NCPs (Non-Conductive Pastes) depending on silica filler contents and diluent contents were investigated. And then, thermal cycling (T/C) reliability of flip chip assembly using selected NCPs was verified. As the silica filler content increased, thermo-mechanical properties of NCPs were changed. The higher the silica filler content was added, glass transition temperature ($T_g$) and storage modulus at room temperature became higher. While, coefficient of thermal expansion (CTE) decreased. On the other hand, rheological properties of NCPs were significantly affected by diluent content. As the diluent content increased, viscosity of NCP decreased and thixotropic index increased. However, the addition of diluent deteriorated thermo-mechanical properties such as modulus, CTE, and $T_g$. Based on these results, three candidates of NCPs with various silica filler and diluent contents were selected as adhesives for reliability test of flip chip assemblies. T/C reliability test was performed by measuring changes of NCP bump connection resistance. Results showed that flip chip assembly using NCP with lower CTE and higher modulus exhibited better T/C reliability behavior because of reduced shear strain in NCP adhesive layer.

  • PDF

Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste (전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

Effect of Fine Alumina Filler Addition on the Thermal Conductivity of Non-conductive Paste (NCP) for Multi Flip Chip Bonding (멀티 플립칩 본딩용 비전도성 접착제(NCP)의 열전도도에 미치는 미세 알루미나 필러의 첨가 영향)

  • Jung, Da-Hoon;Lim, Da-Eun;Lee, So-Jeong;Ko, Yong-Ho;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.11-15
    • /
    • 2017
  • As the heat dissipation problem is increased in 3D multi flip chip packages, an improvement of thermal conductivity in bonding interfaces is required. In this study, the effect of alumina filler addition was investigated in non-conductive paste(NCP). The fine alumina filler having average particles size of 400 nm for the fine pitch interconnection was used. As the alumina filler content was increased from 0 to 60 wt%, the thermal conductivity of the cured product was increased up to 0.654 W/mK at 60 wt%. It was higher value than 0.501 W/mK which was reported for the same amount of silica. It was also found out that the addition of fine sized alumina filler resulted in the smaller decrease in thermal conductivity than the larger sized particles. The viscosity of NCP with alumina addition was increased sharply at the level of 40 wt%. It was due to the increase of the interaction between the filler particles according to the finer particle size. In order to achieve the appropriate viscosity and excellent thermal conductivity with fine alumina fillers, the highly efficient dispersion process was considered to be important.

Design and Analysis of NCP Packaging Process for Fine-Pitch Flexible Printed Circuit Board (미세피치 연성인쇄회로기판 대응을 위한 NCP 패키징 공정설계 및 분석)

  • Shim, Jae-Hong;Cha, Dong-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Recently, LCD (Liquid Crystal Display) requires various technical challenges; high definition, high quality, big size, and low price. These demands more pixels in the fixed area of the LCD and very fine lead pitch of the driving IC which controls the pixels. Therefore, a new packaging technology is needed to meet such technical requirement. NCP (Non Conductive Paste) is one of the new packaging methods and has excellent characteristics to overcome the problems of the ACF (Anisotropic Conductive Film). In this paper, we analyzed the process of the NCP for COF (Chip on FPCB) and proposed the key design parameters of the NCP process. Through a series of experiments, we obtained the stable values of the design parameters for successful NCP process.

Performance of carbon fiber added to anodes of conductive cement-graphite pastes used in electrochemical chloride extraction in concretes

  • Pellegrini-Cervantes, M.J.;Barrios-Durstewitz, C.P.;Nunez-Jaquez, R.E.;Baldenebro-Lopez, F.J.;Corral-Higuera, R.;Arredondo-Rea, S.P.;Rodriguez-Rodriguez, M.;Llanes-Cardenas, O.;Beltran-Chacon, R.
    • Carbon letters
    • /
    • v.26
    • /
    • pp.18-24
    • /
    • 2018
  • Pollution of chloride ion-reinforced concrete can trigger active corrosion processes that reduce the useful life of structures. Multifunctional materials used as a counter-electrode by electrochemical techniques have been used to rehabilitate contaminated concrete. Cement-based pastes added to carbonaceous material, fibers or dust, have been used as an anode in the non-destructive Electrochemical Chloride Extraction (ECE) technique. We studied the performance of the addition of Carbon Fiber (CF) in a cement-graphite powder base paste used as an anode in ECE of concretes contaminated with chlorides from the preparation of the mixture. The experimental parameters were: 2.3% of free chlorides, 21 days of ECE application, a Carbon Fiber Volume Fraction (CFVF) of 0.1, 0.3, 0.6, 0.9%, a lithium borate alkaline electrolyte, a current density of $4.0A/m^2$ and a cement/graphite ratio of 1.0 for the paste. The efficiency of the ECE in the traditional technique using metal mesh as an anode was 77.6% and for CFVF of 0.9% it was 90.4%, with a tendency to increase to higher percentages of the CFVF in the conductive cement-graphite paste, keeping the pH stable and achieving a homogeneous ECE in the mass of the concrete contaminated with chlorides.

LCD Driver IC Assembly Technologies & Status

  • Shen, Geng-shin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.21-30
    • /
    • 2002
  • According the difference of flex substrate, (reel tape), there are three kind assembly types of LCD driver IC is COG, TCP and COF, respectively. The TCP is the maturest in these types for stability of raw material supply and other specification. And TCP is the major assembly type of LCD driver IC and the huge demand from Taiwan's large TFT LCD panel house since this spring. But due to its package structure and the raw material applied in this package, there is some limitation in fine pitch application of this package type, (TCP). So, COF will be very potential in compact and portable application comparison with TCP in the future. There are three kinds assembly methods in COF, one is ACF by using the anisotropic conductive film to connect the copper lead of tape and gold bump of IC, another is eutectic bonding by using the thermo-pressure to joint the copper lead of tape and gold bump of IC, and last is NCP by using non-conductive paste to adhere the copper lead of tape and gold bump of IC. To have a global realization, this paper will briefly review the status of Taiwan's large TFT panel house, the internal driver IC design house, and the back-end assembly house in the beginning. The different material property of raw material, PI tape is also compared in the paper. The more detail of three kinds of COF assembly method will be described and compared in this paper.

  • PDF

Gravure Offset Printed on Fine Pattern by Developing Electrodes for the Ag Paste (Gravure Offset 인쇄에 의한 미세 전극용 Ag Paste 개발)

  • Lee, Sang-Yoon;Jang, Ah-Ram;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.45-56
    • /
    • 2012
  • Printing technology is accepted by appropriate technology that smart phones, tablet PC, display(LCD, OLED, etc.) precision recently in the electronics industry, the market grows, this process in the ongoing efforts to improve competitiveness through the development of innovative technologies. So printed electronics appeared by new concept. This technology development is applied on electronic components and circuits for the simplification of the production process and reduce processing costs. Low-temperature process making possible for widening, slimmer, lighter, and more flexible, plastic substrates, such as(flexible) easily by forming a thin film on a substrate has been studied. In the past, the formation of the electrode used a screen printing method. But the screen printing method is formation of fine patterns, high-speed printing, mass production is difficult. The roll-to-roll printing method as an alternative to screen printing to produce electronic devices by printing techniques that were used traditionally in the latest technology and processing techniques applied to precision control are very economical to implement fine-line printing equipment has been evaluated as. In order to function as electronic devices, especially the dozens of existing micro-level of non-dot print fine line printing is required, the line should not break at all, because according to the specifications required to fit the ink transfer conditions should be established. In this study of roll-to-roll printing conductive paste suitable for gravure offset printing by developing Ag paste for forming fine patterns to study the basic physical properties with the aim of this study were to.

Comparative Study on the Flip-chip Packaging using non-conductive paste (NCP 적용 플립칩 패키징 비교 연구)

  • Kim, Se-Sil;Lee, So-Jeong;Kim, Jun-Gi;Lee, Chang-U;Kim, Jeong-Han;Lee, Ji-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.146-149
    • /
    • 2007
  • 1) 자체 제작한 NCP인 A, B, C 3종은 상용화 제품에 비해 도포성에 관련한 특성은 우수한 것으로 나타났으나 Tg 등의 열특성은 개선이 필요한 것으로 판단된다. 2) 접합강도의 경우 4종의 큰 차이가 없었으나 필러가 비교적 적은 조성인 B 조성의 경우 가장 큰 접합강도를 나타냈다. 3) NCP A, B, C 3종에 대한 접속저항 측정 결과 필러가 가장 많은 C의 경우가 가장 높은 저항 값을 보였으며 이는 가속 고온 고습 시험에 대한 결과에서도 급격한 접속률 감소를 통해 확인할 수 있다. 4) 시간에 따른 접속저항의 급격한 증가는 NCP 성분 중 친수성을 가진 물질이 있는 것이 원인이라 판단되며 이에 대한 개선을 통해 고습에 대한 신뢰성을 향상시킬 수 있을 것으로 보인다.

  • PDF

Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding (플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향)

  • Choi, Won-Jung;Yoo, Se-Hoon;Lee, Hyo-Soo;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.454-458
    • /
    • 2012
  • Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.