• Title/Summary/Keyword: Non-canonical ubiquitination

Search Result 2, Processing Time 0.02 seconds

Ubiquitin-regulating effector proteins from Legionella

  • Jeong, Minwoo;Jeon, Hayoung;Shin, Donghyuk
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.316-322
    • /
    • 2022
  • Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins using the proteasome- or autophagy-mediated degradation of ubiquitinated substrates, which can be either intracellular or foreign proteins from invading pathogens. Legionella, a gram-negative intracellular pathogen, hinders the host-ubiquitin system by translocating hundreds of effector proteins into the host cell's cytoplasm. In this review, we describe the current understanding of ubiquitin machinery from Legionella. We summarize structural and biochemical differences between the host-ubiquitin system and ubiquitin-related effectors of Legionella. Some of these effectors act much like canonical host-ubiquitin machinery, whereas others have distinctive structures and accomplish non-canonical ubiquitination via novel biochemical mechanisms.

Deubiquitinase Otubain 1 as a Cancer Therapeutic Target (암 치료 표적으로써 OTUB1)

  • Kim, Dong Eun;Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.483-490
    • /
    • 2020
  • The ubiquitin system uses ligases and deubiquitinases (DUBs) to regulate ubiquitin position on protein substrates and is involved in many biological processes which determine stability, activity, and interaction of the target substrate. DUBs are classified in six groups according to catalytic domain, namely ubiquitin-specific proteases (USPs); ubiquitin C-terminal hydrolases (UCHs); ovarian tumor proteases (OTUs); Machado Joseph Disease proteases (MJDs); motif interacting with Ub (MIU)-containing novel DUB family (MINDY); and Jab1/MPN/MOV34 metalloenzymes (JAMMs). Otubain 1 (OTUB1) is a DUB in the OTU family which possesses both canonical and non-canonical activity and can regulate multiple cellular signaling pathways. In this review, we describe the function of OTUB1 through regulation of its canonical and non-canonical activities in multiple specifically cancer-associated pathways. The canonical activity of OTUB1 inhibits protein ubiquitination by cleaving Lys48 linkages while its non-canonical activity prevents ubiquitin transfer onto target proteins through binding to E2-conjugating enzymes, resulting in the induction of protein deubiquitination. OTUB1 can therefore canonically and non-canonically promote tumor cell proliferation, invasion, and drug resistance through regulating FOXM1, ERα, KRAS, p53, and mTORC1. Moreover, clinical research has demonstrated that OTUB1 overexpresses with high metastasis in many tumor types including breast, ovarian, esophageal squamous, and glioma. Therefore, OTUB1 has been suggested as a diagnosis marker and potential therapeutic target for oncotherapy.