Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.5.483

Deubiquitinase Otubain 1 as a Cancer Therapeutic Target  

Kim, Dong Eun (Department of Otolaryngology, School of Medicine, Keimyung University)
Woo, Seon Min (Department of Immunology, School of Medicine, Keimyung University)
Kwon, Taeg Kyu (Department of Immunology, School of Medicine, Keimyung University)
Publication Information
Journal of Life Science / v.30, no.5, 2020 , pp. 483-490 More about this Journal
Abstract
The ubiquitin system uses ligases and deubiquitinases (DUBs) to regulate ubiquitin position on protein substrates and is involved in many biological processes which determine stability, activity, and interaction of the target substrate. DUBs are classified in six groups according to catalytic domain, namely ubiquitin-specific proteases (USPs); ubiquitin C-terminal hydrolases (UCHs); ovarian tumor proteases (OTUs); Machado Joseph Disease proteases (MJDs); motif interacting with Ub (MIU)-containing novel DUB family (MINDY); and Jab1/MPN/MOV34 metalloenzymes (JAMMs). Otubain 1 (OTUB1) is a DUB in the OTU family which possesses both canonical and non-canonical activity and can regulate multiple cellular signaling pathways. In this review, we describe the function of OTUB1 through regulation of its canonical and non-canonical activities in multiple specifically cancer-associated pathways. The canonical activity of OTUB1 inhibits protein ubiquitination by cleaving Lys48 linkages while its non-canonical activity prevents ubiquitin transfer onto target proteins through binding to E2-conjugating enzymes, resulting in the induction of protein deubiquitination. OTUB1 can therefore canonically and non-canonically promote tumor cell proliferation, invasion, and drug resistance through regulating FOXM1, ERα, KRAS, p53, and mTORC1. Moreover, clinical research has demonstrated that OTUB1 overexpresses with high metastasis in many tumor types including breast, ovarian, esophageal squamous, and glioma. Therefore, OTUB1 has been suggested as a diagnosis marker and potential therapeutic target for oncotherapy.
Keywords
Cancer; deubiquitinases; E2 enzyme; OTUB1; protein stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B. 3rd. and Stockwell, B. R. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072.   DOI
2 Sun, X. X., Challagundla, K. B. and Dai, M. S. 2012. Positive regulation of p53 stability and activity by the deubiquitinating enzyme otubain 1. EMBO J. 31, 576-592.   DOI
3 Swatek, K. N. and Komander, D. 2016. Ubiquitin modifications. Cell Res. 26, 399-422.   DOI
4 Wang, Y., Zhou, X., Xu, M., Weng, W., Zhang, Q., Yang, Y., Wei, P. and Du, X. 2016. OTUB1-catalyzed deubiquitination of FOXM1 facilitates tumor progression and predicts a poor prognosis in ovarian cancer. Oncotarget 7, 36681-36697.   DOI
5 Wiener, R., Zhang, X., Wang, T. and Wolberger, C. 2012. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483, 618-622.   DOI
6 Xu, L., Li, J., Bao, Z., Xu, P., Chang, H., Wu, J., Bei, Y., Xia, L., Wu, P., Yan, K., Lu, B. and Cui, G. 2017. Silencing of OTUB1 inhibits migration of human glioma cells in vitro. Neuropathology 37, 217-226.   DOI
7 Hao, M., Weng, X., Wang, Y., Sun, X., Yan, T., Li, Y., Hou, L., Meng, X. and Wang, J. 2018. Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem. Pharmacol. 147, 128-140.   DOI
8 Herhaus, L., Al-Salihi, M., Macartney, T., Weidlich, S. and Sapkota, G. P. 2013. OTUB1 enhances TGFbeta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat. Commun. 4, 2519-2531.   DOI
9 Herhaus, L., Perez-Oliva, A. B., Cozza, G., Gourlay, R., Weidlich, S., Campbell, D. G., Pinna, L. A. and Sapkota, G. P. 2015. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at ser16 to trigger its nuclear localization. Sci. Signal. 8, ra35.   DOI
10 Iglesias-Gato, D., Chuan, Y. C., Jiang, N., Svensson, C., Bao, J., Paul, I., Egevad, L., Kessler, B. M., Wikstrom, P., Niu, Y. and Flores-Morales, A. 2015. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol. Cancer 14, 8-21.   DOI
11 Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., Ishov, A. M., Tommerup, N., Vissing, H., Sekido, Y., Minna, J., Borodovsky, A., Schultz, D. C., Wilkinson, K. D., Maul, G. G., Barlev, N., Berger, S. L., Prendergast, G. C. and Rauscher, F. J. 3rd. 1998. BAP1: A novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16, 1097-1112.   DOI
12 Zhou, H., Liu, Y., Zhu, R., Ding, F., Cao, X., Lin, D. and Liu, Z. 2018. OTUB1 promotes esophageal squamous cell carcinoma metastasis through modulating Snail stability. Oncogene 37, 3356-3368.   DOI
13 Xu, L., Lubkov, V., Taylor, L. J. and Bar-Sagi, D. 2010. Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr. Biol. 20, 1372-1377.   DOI
14 Yuan, L., Yuan, P., Yuan, H., Wang, Z., Run, Z., Chen, G., Zhao, P. and Xu, B. 2017. Mir-542-3p inhibits colorectal cancer cell proliferation, migration and invasion by targeting OTUB1. Am. J. Cancer Res. 7, 159-172.
15 Zhao, L., Wang, X., Yu, Y., Deng, L., Chen, L., Peng, X., Jiao, C., Gao, G., Tan, X., Pan, W., Ge, X. and Wang, P. 2018. OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR. J. Biol. Chem. 293, 4883-4892.   DOI
16 Pinto-Fernandez, A. and Kessler, B. M. 2016. Dubbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front. Genet. 7, 133-145.
17 Juang, Y. C., Landry, M. C., Sanches, M., Vittal, V., Leung, C. C., Ceccarelli, D. F., Mateo, A. R., Pruneda, J. N., Mao, D. Y., Szilard, R. K., Orlicky, S., Munro, M., Brzovic, P. S., Klevit, R. E., Sicheri, F. and Durocher, D. 2012. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol. Cell 45, 384-397.   DOI
18 Zhou, Y., Jia, Q., Meng, X., Chen, D. and Zhu, B. 2019. ERRalpha regulates OTUB1 expression to promote colorectal cancer cell migration. J. Cancer 10, 5812-5819.   DOI
19 Nicastro, G., Menon, R. P., Masino, L., Knowles, P. P., McDonald, N. Q. and Pastore, A. 2005. The solution structure of the Josephin domain of ataxin-3: Structural determinants for molecular recognition. Proc. Natl. Acad. Sci. USA. 102, 10493-10498.   DOI
20 Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K. and Bernards, R. 2005. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786.   DOI
21 Quesada, V., Ordonez, G. R., Sanchez, L. M., Puente, X. S. and Lopez-Otin, C. 2009. The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res. 37, D239-243.   DOI
22 Reyes-Turcu, F. E., Ventii, K. H. and Wilkinson, K. D. 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397.   DOI
23 Sato, Y., Yoshikawa, A., Yamagata, A., Mimura, H., Yamashita, M., Ookata, K., Nureki, O., Iwai, K., Komada, M. and Fukai, S. 2008. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455, 358-362.   DOI
24 Ernst, A., Avvakumov, G., Tong, J., Fan, Y., Zhao, Y., Alberts, P., Persaud, A., Walker, J. R., Neculai, A. M., Neculai, D., Vorobyov, A., Garg, P., Beatty, L., Chan, P. K., Juang, Y. C., Landry, M. C., Yeh, C., Zeqiraj, E., Karamboulas, K., Allali-Hassani, A., Vedadi, M., Tyers, M., Moffat, J., Sicheri, F., Pelletier, L., Durocher, D., Raught, B., Rotin, D., Yang, J., Moran, M. F., Dhe-Paganon, S. and Sidhu, S. S. 2013. A strategy for modulation of enzymes in the ubiquitin system. Science 339, 590-595.   DOI
25 Sheng, C., Dong, G., Miao, Z., Zhang, W. and Wang, W. 2015. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem. Soc. Rev. 44, 8238-8259.   DOI
26 Stanisic, V., Malovannaya, A., Qin, J., Lonard, D. M. and O'Malley, B. W. 2009. OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) alpha and affects ERalpha transcriptional activity. J. Biol. Chem. 284, 16135-16145.   DOI
27 Abdul Rehman, S. A., Kristariyanto, Y. A., Choi, S. Y., Nkosi, P. J., Weidlich, S., Labib, K., Hofmann, K. and Kulathu, Y. 2016. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol. Cell 63, 146-155.   DOI
28 Altun, M., Kramer, H. B., Willems, L. I., McDermott, J. L., Leach, C. A., Goldenberg, S. J., Kumar, K. G., Konietzny, R., Fischer, R., Kogan, E., Mackeen, M. M., McGouran, J., Khoronenkova, S. V., Parsons, J. L., Dianov, G. L., Nicholson, B. and Kessler, B. M. 2011. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401-1412.   DOI
29 Arkin, M. R., Tang, Y. and Wells, J. A. 2014. Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chem. Biol. 21, 1102-1114.   DOI
30 Edelmann, M. J., Kramer, H. B., Altun, M. and Kessler, B. M. 2010. Post-translational modification of the deubiquitinating enzyme otubain 1 modulates active rhoa levels and susceptibility to yersinia invasion. FEBS J. 277, 2515-2530.   DOI
31 Fagerberg, L., Hallstrom, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjostedt, E., Lundberg, E., Szigyarto, C. A., Skogs, M., Takanen, J. O., Berling, H., Tegel, H., Mulder, J., Nilsson, P., Schwenk, J. M., Lindskog, C., Danielsson, F., Mardinoglu, A., Sivertsson, A., von Feilitzen, K., Forsberg, M., Zwahlen, M., Olsson, I., Navani, S., Huss, M., Nielsen, J., Ponten, F. and Uhlen, M. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibodybased proteomics. Mol. Cell. Proteomics 13, 397-406.   DOI
32 Finley, D., Ciechanover, A. and Varshavsky, A. 2004. Ubiquitin as a central cellular regulator. Cell 116, S29-32.   DOI
33 Gao, S., Alarcon, C., Sapkota, G., Rahman, S., Chen, P. Y., Goerner, N., Macias, M. J., Erdjument-Bromage, H., Tempst, P. and Massague, J. 2009. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol. Cell 36, 457-468.   DOI
34 Goncharov, T., Niessen, K., de Almagro, M. C., Izrael-Tomasevic, A., Fedorova, A. V., Varfolomeev, E., Arnott, D., Deshayes, K., Kirkpatrick, D. S. and Vucic, D. 2013. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J. 32, 1103-1114.   DOI
35 Koulich, E., Li, X. and DeMartino, G. N. 2008. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell 19, 1072-1082.   DOI
36 Karunarathna, U., Kongsema, M., Zona, S., Gong, C., Cabrera, E., Gomes, A. R., Man, E. P., Khongkow, P., Tsang, J. W., Khoo, U. S., Medema, R. H., Freire, R. and Lam, E. W. 2016. OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance. Oncogene 35, 1433-1444.   DOI
37 Komander, D., Clague, M. J. and Urbe, S. 2009. Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550-563.   DOI
38 Komander, D. and Rape, M. 2012. The ubiquitin code. Annu. Rev. Biochem. 81, 203-229.   DOI
39 Kulathu, Y. and Komander, D. 2012. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508-523.   DOI
40 Li, Y., Sun, X. X., Elferich, J., Shinde, U., David, L. L. and Dai, M. S. 2014. Monoubiquitination is critical for ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (Otub1) to suppress UbcH5 enzyme and stabilize p53 protein. J. Biol. Chem. 289, 5097-5108.   DOI
41 Liu, T., Jiang, L., Tavana, O. and Gu, W. 2019. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7 A11. Cancer Res. 79, 1913-1924.   DOI
42 Makarova, K. S., Aravind, L. and Koonin, E. V. 2000. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and chlamydia pneumoniae. Trends Biochem. Sci. 25, 50-52.   DOI
43 Chen, Y., Wang, Y. G., Li, Y., Sun, X. X. and Dai, M. S. 2017. Otub1 stabilizes MDMX and promotes its proapoptotic function at the mitochondria. Oncotarget 8, 11053-11062.   DOI
44 Nakada, S., Tai, I., Panier, S., Al-Hakim, A., Iemura, S., Juang, Y. C., O'Donnell, L., Kumakubo, A., Munro, M., Sicheri, F., Gingras, A. C., Natsume, T., Suda, T. and Durocher, D. 2010. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466, 941-946.   DOI
45 Arnst, J. L., Davies, C. W., Raja, S. M., Das, C. and Natarajan, A. 2013. High-throughput compatible fluorescence resonance energy transfer-based assay to identify small molecule inhibitors of amsh deubiquitinase activity. Anal. Biochem. 440, 71-77.   DOI
46 Baietti, M. F., Simicek, M., Abbasi Asbagh, L., Radaelli, E., Lievens, S., Crowther, J., Steklov, M., Aushev, V. N., Martinez Garcia, D., Tavernier, J. and Sablina, A. A. 2016. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol. Med. 8, 288-303.   DOI
47 Balakirev, M. Y., Tcherniuk, S. O., Jaquinod, M. and Chroboczek, J. 2003. Otubains: A new family of cysteine proteases in the ubiquitin pathway. EMBO Rep. 4, 517-522.   DOI
48 Chen, J., Dexheimer, T. S., Ai, Y., Liang, Q., Villamil, M. A., Inglese, J., Maloney, D. J., Jadhav, A., Simeonov, A. and Zhuang, Z. 2011. Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol. 18, 1390-1400.   DOI
49 D'Arcy, P., Wang, X. and Linder, S. 2015. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol. Ther. 147, 32-54.   DOI
50 Deshaies, R. J. and Joazeiro, C. A. 2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434.   DOI