Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.7.054

Ubiquitin-regulating effector proteins from Legionella  

Jeong, Minwoo (Department of System Biology, College of Life Sciences and Biotechnology, Yonsei University)
Jeon, Hayoung (Department of System Biology, College of Life Sciences and Biotechnology, Yonsei University)
Shin, Donghyuk (Department of System Biology, College of Life Sciences and Biotechnology, Yonsei University)
Publication Information
BMB Reports / v.55, no.7, 2022 , pp. 316-322 More about this Journal
Abstract
Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins using the proteasome- or autophagy-mediated degradation of ubiquitinated substrates, which can be either intracellular or foreign proteins from invading pathogens. Legionella, a gram-negative intracellular pathogen, hinders the host-ubiquitin system by translocating hundreds of effector proteins into the host cell's cytoplasm. In this review, we describe the current understanding of ubiquitin machinery from Legionella. We summarize structural and biochemical differences between the host-ubiquitin system and ubiquitin-related effectors of Legionella. Some of these effectors act much like canonical host-ubiquitin machinery, whereas others have distinctive structures and accomplish non-canonical ubiquitination via novel biochemical mechanisms.
Keywords
Effector protein; Host-pathogen interaction; Legionella; Non-canonical ubiquitination; Ubiquitin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Prokhorova E, Zobel F, Smith R et al (2021) Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat Commun 12, 4055   DOI
2 Guan H, Fu J, Yu T et al (2020) Molecular basis of ubiquitination catalyzed by the bacterial transglutaminase MavC. Adv Sci (Weinh) 7, 2000871   DOI
3 Gan N, Guan H, Huang Y et al (2020) Legionella pneumophila regulates the activity of UBE2N by deamidase-mediated deubiquitination. EMBO J 39, e102806   DOI
4 Mevissen TET and Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86, 159-192   DOI
5 Kitao T, Taguchi K, Seto S et al (2020) Legionella manipulates non-canonical SNARE pairing using a bacterial deubiquitinase. Cell Rep 32, 108107   DOI
6 Morris JR and Solomon E (2004) BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 13, 807-817   DOI
7 Gregori L, Poosch MS, Cousins G and Chau V (1990) A uniform isopeptide-linked multiubiquitin chain is sufficient to target substrate for degradation in ubiquitin-mediated proteolysis. J Biol Chem 265, 8354-8357   DOI
8 Clevers H and Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205   DOI
9 Edelmann MJ, Iphofer A, Akutsu M et al (2009) Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem J 418, 379-390   DOI
10 Kitao T, Nagai H and Kubori T (2020) Divergence of Legionella effectors reversing conventional and unconventional ubiquitination. Front Cell Infect Microbiol 10, 448   DOI
11 Schulze-Niemand E, Naumann M and Stein M (2021) The activation and selectivity of the Legionella RavD deubiquitinase. Front Mol Biosci 8, 770320   DOI
12 Bhogaraju S, Bonn F, Mukherjee R et al (2019) Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature 572, 382-386   DOI
13 Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M and Alessi DR (2008) Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 411, 249-260   DOI
14 Keusekotten K, Elliott PR, Glockner L et al (2013) OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312-1326   DOI
15 Huang H, Jeon MS, Liao L et al (2010) K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity 33, 60-70   DOI
16 Thrower JS, Hoffman L, Rechsteiner M and Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19, 94-102   DOI
17 Duncan LM, Piper S, Dodd RB et al (2006) Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J 25, 1635-1645   DOI
18 Mevissen TE, Hospenthal MK, Geurink PP et al (2013) OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154, 169-184   DOI
19 Shin D, Bhattacharya A, Cheng YL et al (2020) Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. Elife 9, e58277   DOI
20 Walczak H, Iwai K and Dikic I (2012) Generation and physiological roles of linear ubiquitin chains. BMC Biol 10, 23   DOI
21 Nishikawa H, Ooka S, Sato K et al (2004) Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J Biol Chem 279, 3916-3924   DOI
22 Ordureau A, Sarraf SA, Duda DM et al (2014) Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56, 360-375   DOI
23 Chau V, Tobias JW, Bachmair A et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-1583   DOI
24 Schulze-Niemand E, Naumann M and Stein M (2022) Substrate-assisted activation and selectivity of the bacterial RavD effector deubiquitinylase. Proteins 90, 947-958   DOI
25 Takekawa N, Kubori T, Iwai T, Nagai H and Imada K (2022) Structural basis of ubiquitin recognition by a bacterial ovarian tumor deubiquitinase LotA. J Bacteriol 204, e0037621   DOI
26 Ma K, Zhen X, Zhou B et al (2020) The bacterial deubiquitinase Ceg23 regulates the association of Lys-63-linked polyubiquitin molecules on the Legionella phagosome. J Biol Chem 295, 1646-1657   DOI
27 Schubert AF, Nguyen JV, Franklin TG et al (2020) Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO J 39, e105127   DOI
28 Wan M, Sulpizio AG, Akturk A et al (2019) Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain-containing Legionella effectors. Proc Natl Acad Sci U S A 116, 23518-23526   DOI
29 Black MH, Osinski A, Gradowski M et al (2019) Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 364, 787-792   DOI
30 Oeckinghaus A, Wegener E, Welteke V et al (2007) Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation. EMBO J 26, 4634-4645   DOI
31 Mu Y, Wang Y, Huang Y et al (2020) Structural insights into the mechanism and inhibition of transglutaminase-induced ubiquitination by the Legionella effector MavC. Nat Commun 11, 1774   DOI
32 Kwasna D, Abdul Rehman SA, Natarajan J et al (2018) Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell 70, 150-164 e156   DOI
33 Shin D, Mukherjee R, Liu Y et al (2020) Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB. Mol Cell 77, 164-179 e166   DOI
34 Bhogaraju S, Kalayil S, Liu Y et al (2016) Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636-1649 e1613   DOI
35 Ohi MD, Vander Kooi CW, Rosenberg JA, Chazin WJ and Gould KL (2003) Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol 10, 250-255   DOI
36 Shabek N, Herman-Bachinsky Y, Buchsbaum S et al (2012) The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. Mol Cell 48, 87-97   DOI
37 Gatti M, Pinato S, Maiolica A et al (2015) RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10, 226-238   DOI
38 Fei C, Li Z, Li C et al (2013) Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/beta-catenin signaling. Mol Cell Biol 33, 4095-4105   DOI
39 Marin I and Ferrus A (2002) Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol 19, 2039-2050   DOI
40 Spratt DE, Walden H and Shaw GS (2014) RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J 458, 421-437   DOI
41 Husnjak K and Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81, 291-322   DOI
42 Ni X, Kou W, Gu J et al (2019) TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. EMBO J 38, e99766   DOI
43 Hershko A and Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67, 425-479   DOI
44 Mann M and Jensen ON (2003) Proteomic analysis of posttranslational modifications. Nat Biotechnol 21, 255-261   DOI
45 Wang J, Yang S, Liu L, Wang H and Yang B (2017) HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity. Virus Res 232, 13-21   DOI
46 Adams M, Sharma R, Colby T, Weis F, Matic I and Bhogaraju S (2021) Structural basis for protein glutamylation by the Legionella pseudokinase SidJ. Nat Commun 12, 6174   DOI
47 Akturk A, Wasilko DJ, Wu X et al (2018) Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature 557, 729-733   DOI
48 Olsen JV and Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12, 3444-3452   DOI
49 Kalayil S, Bhogaraju S, Bonn F et al (2018) Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature 557, 734-738   DOI
50 Wang Y, Shi M, Feng H et al (2018) Structural insights into non-canonical ubiquitination catalyzed by SidE. Cell 173, 1231-1243 e1216   DOI
51 Schulman BA and Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10, 319-331   DOI
52 Olsen SK and Lima CD (2013) Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol Cell 49, 884-896   DOI
53 Ye Y and Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10, 755-764   DOI
54 Buetow L and Huang DT (2016) Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 17, 626-642   DOI
55 Deshaies RJ and Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78, 399-434   DOI
56 Berndsen CE and Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21, 301-307   DOI
57 Tokunaga F, Sakata S, Saeki Y et al (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11, 123-132   DOI
58 Song L, Xie Y, Li C et al (2021) The Legionella effector SdjA is a bifunctional enzyme that distinctly regulates phosphoribosyl ubiquitination. mBio 12, e0231621   DOI
59 Ikeda F, Rahighi S, Wakatsuki S and Dikic I (2011) Selective binding of linear ubiquitin chains to NEMO in NF-kappaB activation. Adv Exp Med Biol 691, 107-114   DOI
60 Kirisako T, Kamei K, Murata S et al (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25, 4877-4887   DOI
61 Fields BS, Benson RF and Besser RE (2002) Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15, 506-526   DOI
62 Valleau D, Quaile AT, Cui H et al (2018) Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Rep 23, 568-583   DOI
63 Puvar K, Iyer S, Fu J et al (2020) Legionella effector MavC targets the Ube2N-Ub conjugate for noncanonical ubiquitination. Nat Commun 11, 2365   DOI
64 Gerlach B, Cordier SM, Schmukle AC et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591-596   DOI
65 Braten O, Livneh I, Ziv T et al (2016) Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc Natl Acad Sci U S A 113, E4639-E4647
66 Hofmann RM and Pickart CM (1999) Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645-653   DOI
67 Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S and Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96, 11364-11369   DOI
68 Qiu J, Sheedlo MJ, Yu K et al (2016) Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533, 120-124   DOI
69 Benirschke RC, Thompson JR, Nomine Y et al (2010) Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4. Structure 18, 955-965   DOI
70 Reyes-Turcu FE, Ventii KH and Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78, 363-397   DOI
71 Ashida H, Kim M and Sasakawa C (2014) Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 12, 399-413   DOI
72 Choy A, Dancourt J, Mugo B et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072-1076   DOI
73 Liu Y, Mukherjee R, Bonn F et al (2021) Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Cell Death Differ 28, 2957-2969   DOI
74 Wan M, Wang X, Huang C et al (2019) A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol 4, 1282-1293   DOI
75 Gan N, Zhen X, Liu Y et al (2019) Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature 572, 387-391   DOI
76 Ensminger AW and Isberg RR (2010) E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 78, 3905-3919   DOI
77 Miyamoto K and Saito K (2018) Concise machinery for monitoring ubiquitination activities using novel artificial RING fingers. Protein Sci 27, 1354-1363   DOI
78 Kubori T, Hyakutake A and Nagai H (2008) Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67, 1307-1319   DOI
79 Kubori T, Shinzawa N, Kanuka H and Nagai H (2010) Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6, e1001216   DOI
80 Quaile AT, Urbanus ML, Stogios PJ et al (2015) Molecular characterization of LubX: functional divergence of the u-box fold by Legionella pneumophila. Structure 23, 1459-1469   DOI
81 Dong Y, Mu Y, Xie Y et al (2018) Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature 557, 674-678   DOI
82 Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD and Boyse EA (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A 72, 11-15   DOI
83 Yau R and Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18, 579-586   DOI
84 Osinski A, Black MH, Pawlowski K, Chen Z, Li Y and Tagliabracci VS (2021) Structural and mechanistic basis for protein glutamylation by the kinase fold. Mol Cell 81, 4527-4539 e4528   DOI
85 Price CT, Al-Khodor S, Al-Quadan T et al (2009) Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 5, e1000704   DOI