• Title/Summary/Keyword: Non-associated flow rule

Search Result 28, Processing Time 0.028 seconds

3-D Concrete Model Using Non-associated Flow Rule in Dilatant-Softening Region of Multi-axial Stress State (3차원 솔리드요소 및 비상관 소성흐름 법칙을 이용한 콘크리트의 응력해석)

  • Seong, Dae Jeong;Choi, Jung Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • Cohesive and frictional materials such as concrete and soil are pressure dependent. In general, failure criterion for such materials inclined with respect to positive hydrostatic axis in Haigh-Westergaard stress space. Consequently, inelastic volumetric strain always positive with associated flow rule. In this study, to overcome this shortcoming, non-associated flow rule which controls volumetric component of plastic flow is adopted. Numerical analysis based on a constitutive model using nonuniform hardening plasticity with five parameter failure criterion and non-associated flow rule has conducted to predict concrete behavior under multi-axial stress state and verified with experimental result.

The Role of the Plastic Flow Rules in the Elasto-Plastic Formulation of Joint behaviour (절리거동의 탄소성해석에서 소성유동법칙의 역할)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.173-179
    • /
    • 2000
  • The influence of the plastic flow rules on the elasto-plastic behaviour of a discrete joint element was investigated by performing the numerical direct shear tests under both constant normal displacement and normal displacement conditions. The finite interface elements obeying Plesha’s joint constitutive law was used to allow the relative motion of the rock blocks on the joint surface. Realistic results were obtained in the tests adopting the non-associated flow rule, while the associated flow rule overestimated the joint dilation. To overcome the computational drawbacks coming from the non-symmetric element stiffness matrix in the conventional non-associated plasticity, the symmetric formulation of the tangential stiffness matrix for a non-associated joint element was proposed. The symmetric elasto-plastic matrix it derived by assuming an imaginary equivalent joint with associated flow rule which shows the same plastic response as that of original Joint with non-associated flow rule. The validity of the formulation was confirmed through the numerical direct shear tests under constant normal stress condition.

  • PDF

Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule

  • Yang, X.L.;Xu, J.S.;Li, Y.X.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • Employing non-associated flow rule and Power-Law failure criterion, the failure mechanisms of tunnel roof in homogeneous and layered soils are studied in present analysis. From the viewpoint of energy, limit analysis upper bound theorem and variation principle are introduced to study the influence of dilatancy on the collapse mechanism of rectangular tunnel considering effects of supporting force and seepage force. Through calculation, the collapsing curve expressions of rectangular tunnel which are excavated in homogeneous soil and layered soils respectively are derived. The accuracy of this work is verified by comparing with the existing research results. The collapsing surface shapes with different dilatancy coefficients are draw out and the influence of dilatancy coefficient on possible collapsing range is analyzed. The results show that, in homogeneous soil, the potential collapsing range decreases with the decrease of the dilatancy coefficient. In layered soils, the total height and the width on the layered position of possible collapsing block increase and the width of the falling block on tunnel roof decrease when only the upper soil's dilatancy coefficient decrease. When only the lower soil's dilatancy coefficient decrease or both layers' dilatancy coefficients decrease, the range of the potential collapsing block reduces.

Collapse analysis of shallow tunnel subjected to seepage in layered soils considering joined effects of settlement and dilation

  • Yang, X.L.;Zhang, R.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.217-235
    • /
    • 2017
  • The stability prediction of shallow buried tunnels is one of the most difficult tasks in civil engineering. The aim of this work is to predict the state of collapse in shallow tunnel in layered soils by employing non-associated flow rule and nonlinear failure criterion within the framework of upper bound theorem. Particular emphasis is first given to consider the effects of dilation on the collapse mechanism of shallow tunnel. Furthermore, the seepage forces and surface settlement are considered to analyze the influence of different dilation coefficients on the collapse shape. Two different curve functions which describe two different soil layers are obtained by virtual work equations under the variational principle. The distinct characteristics of falling blocks up and down the water level are discussed in the present work. According to the numerical results, the potential collapse range decreases with the increase of the dilation coefficient. In layered soils, both of the single layer's dilation coefficient and two layers' dilation coefficients increase, the range of the potential collapse block reduces.

The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model

  • Chu, Xihua;Yu, Cun;Xu, Yuanjie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2012
  • The dilatancy of granular materials has significant influence on its mechanical behaviors. The dilation angle is taken as a constant in conventional associated or non-associated flow rules based on Drucker-Prager yields theory. However, various experimental results show the dilatancy changes during progressive failure of granular materials. A non-associated flow rule with evolution of dilation angle is adopted in this study, and Cosserat continuum theory is used to describe the behaviors of granular materials for considering to some extent the its internal structure. Numerical examples focus on the bearing capacity and localization of granular materials, and results illustrate the capability and performance of the presented model in modeling the effect on failure behavior of granular materials.

Comparative study between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis (사면안정해석에 있어서의 유한요소법과 한계평형법의 비교)

  • 이동엽;유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.483-490
    • /
    • 2002
  • This paper presents the results of a comparative study between FEM and LEM on slope stability analysis. For validation, factors of safety were compared between FEM and LEM. The results from the two methods were in good agreement suggesting that the FEM with the shear strength reduction method can be effectively used on slope stability analyses. A series of analysis were then performed using the FEM for various constitutive laws, slope angles, flow rules, and the finite element discretizations. Among the findings, the finite element method in conjunction with the shear strength reduction method can provide reasonable results in terms of factor of safety. Also revealed is that the results of FEM can be significantly affected by the way in which the type of constitutive law and flow rule are selected.

  • PDF

P-S Characteristics for End-bearing Pile in Granular Material (사질토 지반에서 선단지지말뚝의 P-S 특성)

  • Lee Yong Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • This paper investigates P-S (load-settlement) relationship for the end-bearing Pile in granular material using the CRISP FE Program with the laboratory 2D model pile load test. In order to simulate the effect of end-bearing pile problem in the FEA, the author adopts several forms of slip element around the pile length and the pile tip. Through this study it was found that e degree of non-associated Plastic flow rule incoporated into the Mohr-Coulomb model for the end-bearing pile with the slip elements was a dominant factor in terms of numerical solution convergence. In contrast, the roller boundary used along the pile shaft showed a smooth convergence with respect to the degree of non-associated plastic flow rule.

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).

Evaluation of Vertical Bearing Capacity for Bucket and Shallow Foundations Installed in Sand (사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정)

  • Park, Jeongseon;Park, Duhee;Jee, Sunghyun;Kim, Dongjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • The vertical bearing capacity of a bucket foundation installed in sand can be calculated as sum of the skin friction and end bearing capacity. However, the current design equations are not considering the non-associated flow characteristics of sand and the reduction in the skin friction and increase in the end bearing capacity when the vertical load is applied. In this study, we perform two-dimensional axisymmetric finite element analyses following non-associated flow rule and calculate the vertical bearing capacity of circular bucket foundation of various sizes installed in sand of different friction angles. After calculating the skin friction and end bearing force at the ultimate state, design equations are derived for each. The skin friction of bucket foundation is shown significantly small compared to the end bearing capacity. Considering the difference with the available design equation for piles, it is recommended that the equation for piles is used for the bucket foundation. A new shape-depth factor ($s_q{\cdot}d_q$) for bucket foundation is recommended which also accounts for the increment of the end bearing capacity due to skin friction. Additionally, the shape and depth factor of embedded foundation proposed from the associated flow rule can overestimate the bearing capacity in sand, so it is more adequate to use the shape-depth factor proposed in this study.

Three-Dimensional Nonlinear Analysis of Reinforced Concrete Beam with Shear Reinforcements (전단보강된 철근 콘크리트 보의 3차원 거동해석)

  • 주영태;정헌주;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.431-436
    • /
    • 2001
  • Lateral confining effect due to the existence of the shear reinforcements in R.C. beam is investigate in a numerical way. For the purpose, a three dimensional constitutive model of concrete is developed based on the elasto-plasticity using non-associated plastic flow rule to control the excessive inelastic dilatancy. The plastic flow direction is determined based on the associated plastic flow direction in a way to adjust the directional angle between the two normal vector components along the hydrostatic and deviatoric axis in a meridian plane in which the loading function prescribed. The current formulation is combined with the four parameter elasto-plastic triaxial concrete model recently developed. The resulting elasto-plastic triaxial concrete model predicts the fundamental behaviors of concrete under different confining levels and the 4-points flexural test of a beam with shear reinforcements, compares with the experimental results.

  • PDF