• Title/Summary/Keyword: Non-Volatile RAM

Search Result 43, Processing Time 0.023 seconds

Considerations for Designing an Integrated Write Buffer Management Scheme for NAND-based Solid State Drives (SSD를 위한 쓰기 버퍼와 로그 블록의 통합 관리 고려사항)

  • Park, Sungmin;Kang, Sooyong
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • NAND flash memory-based Solid State Drives (SSD) have lots of merits compared to traditional hard disk drives (HDD). However, random write in SSD is still far slower than sequential read/write and random read. There are two independent approaches to resolve this problem: 1) using part of the flash memory blocks as log blocks, and 2) using internal write buffer (DRAM or Non-Volatile RAM) in SSD. While log blocks are managed by the Flash Translation Layer (FTL), write buffer management has been treated separately from FTL. Write buffer management schemes did not use the exact status of log blocks and log block management schemes in FTL did not consider the behavior of write buffer management scheme. In this paper, we first show that log blocks and write buffer have a tight relationship to each other, which necessitates integrated management of both of them. Since log blocks also can be viewed as another type of write buffer, we can manage both of them as an integrated write buffer. Then we provide three design criteria for the integrated write buffer management scheme which can be very useful to SSD firmware designers.

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

A High Performance Flash Memory Solid State Disk (고성능 플래시 메모리 솔리드 스테이트 디스크)

  • Yoon, Jin-Hyuk;Nam, Eyee-Hyun;Seong, Yoon-Jae;Kim, Hong-Seok;Min, Sang-Lyul;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.378-388
    • /
    • 2008
  • Flash memory has been attracting attention as the next mass storage media for mobile computing systems such as notebook computers and UMPC(Ultra Mobile PC)s due to its low power consumption, high shock and vibration resistance, and small size. A storage system with flash memory excels in random read, sequential read, and sequential write. However, it comes short in random write because of flash memory's physical inability to overwrite data, unless first erased. To overcome this shortcoming, we propose an SSD(Solid State Disk) architecture with two novel features. First, we utilize non-volatile FRAM(Ferroelectric RAM) in conjunction with NAND flash memory, and produce a synergy of FRAM's fast access speed and ability to overwrite, and NAND flash memory's low and affordable price. Second, the architecture categorizes host write requests into small random writes and large sequential writes, and processes them with two different buffer management, optimized for each type of write request. This scheme has been implemented into an SSD prototype and evaluated with a standard PC environment benchmark. The result reveals that our architecture outperforms conventional HDD and other commercial SSDs by more than three times in the throughput for random access workloads.