• 제목/요약/키워드: Non-Stationary Vibration

검색결과 71건 처리시간 0.03초

고속철도차량 윤축부근의 소음과 진동 측정을 통한 주행중 감시의 기초연구 (Running Monitoring by the Noise and Vibration Measurement near the Wheelset of the High-Speed Trains : A Preliminary Research)

  • 이준석;최성훈;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1454-1462
    • /
    • 2008
  • This paper is focused on the analysis of the noise and vibration measured near the wheelset of the high-speed trains using a time-varying frequency transform as a preliminary research of running monitoring. Due to the non-stationary characteristics, it is necessary to examine noise and vibration of the train with time-varying frequency transforms. In this paper, the short-time Fourier transform method is utilized - the stored data is localized by modulating with a window function, and Fourier transform is taken to each localized data. For the examination, the non-stationary noise and vibration of the high-speed train's wheelset are measured by using some microphones and accelerometers, and those signals are stored in a on-board data acquisition system. The non-stationary random signal analyses with the short-time Fourier transform are performed, and the result are classified as follows; auto-spectral density, cross-spectral density, frequency response, and coherence functions. From those functions, it is possible to observe the frequency characteristics of sleepers, switchers, tunnels, and steel bridges. Also, some distinct peaks, which are not dependent upon the train's speed, are identified from the results.

  • PDF

다차원 스펙트럼 해석법을 이용한 비정상 소음.진동 신호의 소음원 규명 (Source Identification of Non-Stationary Sound.Vibration Signals Using Multi-Dimensional Spectral Analysis Method)

  • 심현진;이해진;이유엽;이정윤;오재응
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1154-1159
    • /
    • 2006
  • In this paper, time-frequency analysis and multi-dimensional spectral analysis methods are applied to source identification and diagnostic of non-stationary sound vibration signals. By checking the coherences for concerned time, this simulation is very well coincident to expected results. The proposed method analyzes the signal instantaneously in both time and frequency domains. The MDSA (Multiple Dimensional Spectral Analysis) analyzes the signal in the plane of instantaneous time and instantaneous frequency at the same time. And it was verified by using the 1500cc passenger car which is accelerated from 70Hz to 95Hz in 4 seconds, the proposed method is effective in determining the vehicle diagnostic problems.

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng;Huang, Huan;Ma, Haitao;Xu, Rui
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.119-139
    • /
    • 2014
  • A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

SFT를 이용한 로터리 압축기 크랭크 1회전 동안의 실시간 진동소음의 가시화 (The Visualization of Vibration and Noise of The Rotary Compressor during One Cycle of Crank Shaft by use of Short Time Fourier Transform)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Park, Jean-Hyung;Hwang, Seon-Woong
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.346.1-346
    • /
    • 2002
  • There have been many studies to visualize the vibration and noise of rotary compressor. Most of these studies assumed that the signal is stationary and the time-averaged signal is used for visualization. However, the noise and vibration signals generated during one cycle of crank shaft vary continuously. In this paper, the noise and vibration of rotary compressor which vary continuously are visualized by short time fourier transform method. (omitted)

  • PDF

Operational modal analysis of structures by stochastic subspace identification with a delay index

  • Li, Dan;Ren, Wei-Xin;Hu, Yi-Ding;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.187-207
    • /
    • 2016
  • Practical ambient excitations of engineering structures usually do not comply with the stationary-white-noise assumption in traditional operational modal analysis methods due to heavy traffic, wind guests, and other disturbances. In order to eliminate spurious modes induced by non-white noise inputs, the improved stochastic subspace identification based on a delay index is proposed in this paper for a representative kind of stationary non-white noise ambient excitations, which have nonzero autocorrelation values near the vertical axis. It relaxes the stationary-white-noise assumption of inputs by avoiding corresponding unqualified elements in the Hankel matrix. Details of the improved stochastic subspace identification algorithms and determination of the delay index are discussed. Numerical simulations on a four-story frame and laboratory vibration experiments on a simply supported beam have demonstrated the accuracy and reliability of the proposed method in eliminating spurious modes under non-white noise ambient excitations.

Modal parameter identification of civil structures using symplectic geometry mode decomposition

  • Feng Hu;Lunhai Zhi;Zhixiang Hu;Bo Chen
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.61-73
    • /
    • 2023
  • In this article, a novel structural modal parameters identification methodology is developed to determine the natural frequencies and damping ratios of civil structures based on the symplectic geometry mode decomposition (SGMD) approach. The SGMD approach is a new decomposition algorithm that can decompose the complex response signals with better decomposition performance and robustness. The novel method firstly decomposes the measured structural vibration response signals into individual mode components using the SGMD approach. The natural excitation technique (NExT) method is then used to obtain the free vibration response of each individual mode component. Finally, modal natural frequencies and damping ratios are identified using the direct interpolating (DI) method and a curve fitting function. The effectiveness of the proposed method is demonstrated based on numerical simulation and field measurement. The structural modal parameters are identified utilizing the simulated non-stationary responses of a frame structure and the field measured non-stationary responses of a supertall building during a typhoon. The results demonstrate that the developed method can identify the natural frequencies and damping ratios of civil structures efficiently and accurately.

주기 비안정 연속계의 파라메터공진에 관한 주파수 해석 (Frequency Analysis on Parametric Resonance of Periodically Non-stationary Systems with Distributed Parameters)

  • 이용관;체추린
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.295-299
    • /
    • 2004
  • 본 논문에서는 주기 비안정 연속계의 해석을 위한 주파수 방법이 제안된다. 비안정시스템의 안정화를 위한 기존의 주파수 해석법을 일부 수정하여 연속계를 포함한 비안정 시스템에 적합하도록 수정하였으며, 직류모터와 동기발전기로 구성되어 있는 전기-기계 시스템에 적용하여 유용성을 보였다. 복잡한 비안정 연속계의 문제를 각 요소별 주파수 응답을 분리하고 조합하는 작업들을 통하여 쉽게 풀 수 있음을 보였다. 모터-발전기로 구성되어있는 전기-기계 시스템에서 발전기의 상호유도인덕턴스의 시간에 따른 주기적 변화와 장선(long electrical line)의 부하가 시스템의 불안정성을 야기함을 보였다.

  • PDF