• 제목/요약/키워드: Non-Stationary

검색결과 643건 처리시간 0.027초

힐버트-황 변환에 통한 Hand Accelerometer 데이터의 핵심 패턴 추출 (Applying Hilbert-Huang Transform to Extract Essential Patterns from Hand Accelerometer Data)

  • 최병석;서정열
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.179-190
    • /
    • 2017
  • Hand Accelerometer는 인간신체 운동 패턴을 실시간으로 파악하는데 널리 사용되고 있다. 그러므로 행동 유형을 정확하게 파악하는 것은 아주 중요하다. 이 과정에서 각 행동유형의 형태를 미리 정확하게 파악하는 것이 중요하다. 인간의 신체 행동은 센서를 통해 수집된 시계열 데이터로 표현된다. 이 데이터는 비안정적, 비선형적 성격을 가지고 있다. 그래서 이런 성격의 데이터의 유형을 효율적으로 추출하는 방법을 찾는 것은 매우 중요하다. 힐버트-황 변환은 비안정적 비선형적 요소를 시계열데이터에서 효율적으로 추출하는 방법이다. 이 방법을 위의 시계열 데이터에 적용한 결과 핵심패턴이 성공적으로 추출되었다.

Adaptive Wavelet Based Speech Enhancement with Robust VAD in Non-stationary Noise Environment

  • Sungwook Chang;Sungil Jung;Younghun Kwon;Yang, Sung-il
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권4E호
    • /
    • pp.161-166
    • /
    • 2003
  • We present an adaptive wavelet packet based speech enhancement method with robust voice activity detection (VAD) in non-stationary noise environment. The proposed method can be divided into two main procedures. The first procedure is a VAD with adaptive wavelet packet transform. And the other is a speech enhancement procedure based on the proposed VAD method. The proposed VAD method shows remarkable performance even in low SNRs and non-stationary noise environment. And subjective evaluation shows that the performance of the proposed speech enhancement method with wavelet bases is better than that with Fourier basis.

Stability and non-stationary vibration analysis of beams subjected to periodic axial forces using discrete singular convolution

  • Song, Zhiwei;Li, Wei;Liu, Guirong
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.487-499
    • /
    • 2012
  • Dynamic instability of beams subjected to periodic axial forces is studied using the discrete singular convolution (DSC) method with the regularized Shannon's delta kernel. The principal regions of dynamic instability under different boundary conditions are examined in detail, and the non-stationary vibrations near the stability-instability critical regions have been investigated. It is found that the results obtained by using the DSC method are consistent with the analytical solutions, which shows that the DSC algorithm is suitable for the problems considered in this study. It was found that there is a narrow region of beat vibration existed in the vicinity of one side (${\theta}/{\Omega}$ > 1) of the boundaries of the instable region for each condition.

다차원 스펙트럼 해석법을 이용한 비정상 소음.진동 신호의 소음원 규명 (Source Identification of Non-Stationary Sound.Vibration Signals Using Multi-Dimensional Spectral Analysis Method)

  • 심현진;이해진;이유엽;이정윤;오재응
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1154-1159
    • /
    • 2006
  • In this paper, time-frequency analysis and multi-dimensional spectral analysis methods are applied to source identification and diagnostic of non-stationary sound vibration signals. By checking the coherences for concerned time, this simulation is very well coincident to expected results. The proposed method analyzes the signal instantaneously in both time and frequency domains. The MDSA (Multiple Dimensional Spectral Analysis) analyzes the signal in the plane of instantaneous time and instantaneous frequency at the same time. And it was verified by using the 1500cc passenger car which is accelerated from 70Hz to 95Hz in 4 seconds, the proposed method is effective in determining the vehicle diagnostic problems.

Unit Root Test를 기반으로 한 장기 시계열 데이터의 non-stationary 발생에 따른 추세 변화 검정 및 시각화 연구 (A Study on the Test and Visualization of Change in Trends associated with the Occurrence of Non-stationary of Long-term Time Series Data based on Unit Root Test)

  • 유재성;주재걸
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.398-402
    • /
    • 2018
  • 비정상(non-stationary) 장기 시계열 안에서도, 단기적으로 추세의 변화가 일시적인 것인지, 아니면 구조적으로 변한 것인지를 적시에 판단하는 것은 중요하다. 이는 시계열 추세의 변화를 상시 감지하여, 변화에 맞는 적정한 수준의 대응을 할 필요가 있기 때문이다. 본 연구에서는 장기 시계열이 주어진 상황에서, 단위근 검정법을 기반으로 단기적으로 구조변화를 감지하여, 이러한 변화가 얼마나 지속될 것인지를 시각적으로 판단할 수 있는 방법을 제시하고자 한다.

Clustering non-stationary advanced metering infrastructure data

  • Kang, Donghyun;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.225-238
    • /
    • 2022
  • In this paper, we propose a clustering method for advanced metering infrastructure (AMI) data in Korea. As AMI data presents non-stationarity, we consider time-dependent frequency domain principal components analysis, which is a proper method for locally stationary time series data. We develop a new clustering method based on time-varying eigenvectors, and our method provides a meaningful result that is different from the clustering results obtained by employing conventional methods, such as K-means and K-centres functional clustering. Simulation study demonstrates the superiority of the proposed approach. We further apply the clustering results to the evaluation of the electricity price system in South Korea, and validate the reform of the progressive electricity tariff system.

웨이브릿 변환 영역에서 스토케스틱 영상 모델을 이용한 적응 디지털 워터마킹 (Adaptive Digital Watermarking using Stochastic Image Modeling Based on Wavelet Transform Domain)

  • 김현천;권기룡;김종진
    • 한국멀티미디어학회논문지
    • /
    • 제6권3호
    • /
    • pp.508-517
    • /
    • 2003
  • 본 논문에서는 쌍직교 웨이브릿 영역에서 워터마크를 삽입할 수 있는 연속 부대역 양자화 및 스토케스틱 다해상도 특성을 갖는 지각 모델을 제안한다. 적응 워터마킹 알고리즘을 갖는 지각모델은 보다 강인한 워터마크 은닉을 위한 방법으로 연속 부대역 양자화(successive subband quantization: SSQ)에 의해서 텍스쳐 및 에지 영역에 삽입한다. 워터마크 삽입은 국부 영상 특성을 갖는 NVF(noise visibility function)함수에 의해 계산된다. 이 방법은 워터마크가 노이즈 특성을 갖기 때문에 영상의 통계적 특성에 기초한 비정상상태(non-stationary state) 가우스 모델과 정상상태(stationary state) 일반화 가우스(generalized Gaussian: GG)모델을 이용한다. 정상상태 GG모델의 삽입은 다해상도 내의 각 부대역별 분산과 형상계수(shape parameter)를 사용한다. 형상계수를 추정하기 위하여 모멘트 정합 방법을 사용한다. 비정상상태 가우스 모델은 각 부대역의 국부 평균 및 분산을 이용한다. 실험결과 우수한 비가시성과 강인성을 확인하였으며, 공격에 대한 실험으로 Stirmark 3.1 benchmark test를 수행하였다.

  • PDF

Probing Gamma-ray Emission of Geminga and Vela with Non-stationary Models

  • Chai, Yating;Cheng, Kwong-Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.75-92
    • /
    • 2016
  • It is generally believed that the high energy emissions from isolated pulsars are emitted from relativistic electrons/positrons accelerated in outer magnetospheric accelerators (outergaps) via a curvature radiation mechanism, which has a simple exponential cut-off spectrum. However, many gamma-ray pulsars detected by the Fermi LAT (Large Area Telescope) cannot be fitted by simple exponential cut-off spectrum, and instead a sub-exponential is more appropriate. It is proposed that the realistic outergaps are non-stationary, and that the observed spectrum is a superposition of different stationary states that are controlled by the currents injected from the inner and outer boundaries. The Vela and Geminga pulsars have the largest fluxes among all targets observed, which allows us to carry out very detailed phase-resolved spectral analysis. We have divided the Vela and Geminga pulsars into 19 (the off pulse of Vela was not included) and 33 phase bins, respectively. We find that most phase resolved spectra still cannot be fitted by a simple exponential spectrum: in fact, a sub-exponential spectrum is necessary. We conclude that non-stationary states exist even down to the very fine phase bins.

Development of a truncation artifact reduction method in stationary inverse-geometry X-ray laminography for non-destructive testing

  • Kim, Burnyoung;Yim, Dobin;Lee, Seungwan
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1626-1633
    • /
    • 2021
  • In an industrial field, non-destructive testing (NDT) is commonly used to inspect industrial products. Among NDT methods using radiation sources, X-ray laminography has several advantages, such as high depth resolution and low computational costs. Moreover, an X-ray laminography system with stationary source array and compact detector is able to reduce mechanical motion artifacts and improve inspection efficiency. However, this system, called stationary inverse-geometry X-ray laminography (s-IGXL), causes truncation artifacts in reconstructed images due to limited fields-of-view (FOVs). In this study, we proposed a projection data correction (PDC) method to reduce the truncation artifacts arisen in s-IGXL images, and the performance of the proposed method was evaluated with the different number of focal spots in terms of quantitative accuracy. Comparing with conventional techniques, the PDC method showed superior performance in reducing truncation artifacts and improved the quantitative accuracy of s-IGXL images for all the number of focal spots. In conclusion, the PDC method can improve the accuracy of s-IGXL images and allow precise NDT measurements.

재머의 크기가 변하는 환경에서의 억제 알고리즘 연구 (A Study on Jammer Suppression Algorithm for Non-stationary Jamming Environment)

  • 윤호준;이강인;정용식
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.239-247
    • /
    • 2018
  • Adaptive Beamforming (ABF) algorithm, which is a typical jammer suppression algorithm, guarantees the performance on the assumption that the jamming characteristics of the TDS (Training Data Sample) are stationary, which are obtained immediately before and after transmitting the pulse signal. Therefore, effective jammer suppression can not be expected when the jamming characteristics are non-stationary. In this paper, we propose a new jammer suppression algorithm, of which power spectrum fluctuates fast. In this case, we assume that the location of the jammer station is fixed during the processing time. By applying the MPM (Matrix Pencil Method) to the jamming signal in TDS, we can estimate jammer parameters such as power and incident angle, of which the power will vary fast in time or range bins after TDS. Though we assume that the jammer station is fixed, the estimated jammer's incident angle has an error due to the noise, which degrades the performance of the jammer suppression as the jammer power increases fast. Therefore, the jammer's incident angle should be re-estimated at each range bin after TDS. By using the re-estimated jammer's incident angle, we can construct new covariance matrix under the non-stationary jamming environment. Then, the optimum weight for the jammer suppression is obtained by inversing matrix estimation method based on the matrix projection with the estimated jammer parameters as variables. To verify the performance of the proposed algorithm, the SINR (signal-to-interference plus noise ratio) loss of the proposed algorithm is compared with that of the conventional ABF algorithm.