• 제목/요약/키워드: Non-Seismic concentrically braced frames

검색결과 9건 처리시간 0.02초

Seismic behavior of concentrically steel braced frames and their use in strengthening of reinforced concrete frames by external application

  • Unal, Alptug;Kaltakci, Mevlut Yasar
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.687-702
    • /
    • 2016
  • There are many studies in the literature conducted on the subject of ensuring earthquake safety of reinforced concrete and steel structures using steel braced frames, but no detailed study concerning individual behavior of steel braced frames under earthquake loads and strengthening of reinforced concrete structures with out-of-plane steel braced frames has been encountered. In this study, in order to evaluate behaviors of "Concentrically Steel Braced Frames" types defined in TEC-2007 under lateral loads, dimensional analysis of Concentrically Steel Braced Frames designed with different scales and dimensions was conducted, the results were controlled according to TEC-2007, and after conducting static pushover analysis, behavior and load capacity of the Concentrically Steel Braced Frames and hinges sequence of the elements constituting the Concentrically Steel Braced Frames were tested. Concentrically Steel Braced Frames that were tested analytically consist of 2 storey and one bay, and are formed as two groups with the scales 1/2 and 1/3. In the study, Concentrically Steel Braced Frames described in TEC-2007 were designed, which are 7 types in total being non-braced, X-braced, V- braced, $\wedge$- braced, $\backslash$- braced, /- braced and K- braced. Furthermore, in order to verify accuracy of the analytic studies performed, the 1/2 scaled concentrically steel X-braced frame test element made up of box profiles and 1/3 scaled reinforced concrete frame with insufficient earthquake resistance were tested individually under lateral loads, and test results were compared with the results derived from analytic studies and interpreted. Similar results were obtained from both experimental studies and pushover analyses. According to pushover analysis results, load-carrying capacity of 1/3 scaled reinforced concrete frames increased up to 7,01 times as compared to the non-braced specimen upon strengthening. Results acquired from the study revealed that reinforced concrete buildings which have inadequate seismic capacity can be strengthened quickly, easily and economically by this method without evacuating them.

Seismic response evaluation of concentrically rocking zipper braced frames

  • Sarand, Nasim Irani;Jalali, Abdolrahim
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.303-317
    • /
    • 2020
  • In this study an innovative rocking zipper braced frame (RZBF) is proposed to overcome the deficiencies of common concentrically braced frames. RZBF is an improved rocking concentrically braced frame which is based on combination of rocking behavior and zipper columns. The base rocking joints and post-tensioned bars provide rocking response and restoring force, respectively. Also, zipper columns distribute the unbalance force over the frame height and reduce the damage concentration. To evaluate seismic performance of RZBF, a comparison study is carried out considering concentrically braced frame, zipper braced frame, rocking concentrically braced frame and RZBF. Thereby, a suite of non-linear time history analyses had been performed on four different types of archetypes with four, six, eight, ten and twelve stories. Frames were designed and non-linear time history analyses were conducted in OpenSees. To compare the seismic behavior of the archetypes, roof drifts, residual roof drifts, story drifts, the forces of first and top story braces, PT bars forces, column uplift and base shears were taken in to consideration. Results illustrate that using RZBF, can reduce the damage due to reduced residual drifts. Zipper columns enhance the seismic performance of rocking systems. As the number of stories increase in the RZBF systems, larger top story braces were needed. So the RZBF system is applicable on low and midrise buildings.

쉬어탭 공유 접합부를 갖는 비내진중심가새골조의 내진거동 (Seismic Behavior of Non-Seismic Concentrically Braced Frames with Shared Shear tab)

  • 염희진;정은비;유정한
    • 한국강구조학회 논문집
    • /
    • 제27권3호
    • /
    • pp.323-332
    • /
    • 2015
  • 특수중심가새골조(Special Concentrically Braced Frames)는 우수한 경제성, 비탄성 변형 능력, 연성 등의 이점 때문에 횡하중 저항 시스템으로써 다양한 구조물에 적용하고 있다. 이러한 이점으로 국내 외 연구진의 특수중심가새골조에 대한 연구가 지속적으로 진행되어 설계법과 기준이 비약적으로 발전한 반면에, 과거에 설계된 중심가새골조의 내진 성능에 대한 연구는 미약하다. 특히, 1988년 이전에 설계된 중심가새골조는 현재 기준과 비교하여 상대적으로 적은 설계요구를 반영하였기 때문에 내진 거동에 대한 평가가 시급한 실정이다. 본 연구에서는 이러한 중심가새골조를 비내진중심가새골조(Non-Seismic Concentrically Braced Frames)라 칭하고, 워싱턴대학교에서 실시된 사례 조사를 토대로 비내진중심가새골조의 대표적인 접합부인 쉬어탭 공유 용접접합부를 갖는 골조의 내진 거동에 대한 유한요소모델을 제시하고 검증하였다. 이 모델을 이용하여 특수중심가새골조와 대비되는 비내진중심가새골조의 연성 능력, 강도, 비탄성 변형 능력에 대해 규명하여 내진 성능을 평가하였다.

Evaluation of seismic criteria of built-up special concentrically braced frames

  • Izadi, Amin;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.23-37
    • /
    • 2018
  • In this paper, seismic provisions related to built-up special concentrically braced frames (BSCBFs) are investigated under cyclic loading using non-linear finite element analysis of a single-bay single-story frame. These braces, which contain double angle and double channel brace sections, are considered in two types of single diagonal and X-braced frames. The results of this study show that current seismic provisions such as observing the 0.4 ratio for slenderness ratio of individual elements between stitch connectors are conservative in BSCBFs, and can be increased according to the type of braces. Furthermore, such increments will lead to decreasing or remaining the current middle protected zone requirements of each BSCBFs. Failure results of BSCBFs, which are related to the plastic equivalent strain growth of members and ductility capacity of the models, show that the behaviors of double channel back-to-back diagonal braces are more desirable than those of similar face-to-face ones. Also, for double angle diagonal braces, results show that the failure of back-to-back BSCBFs occurs faster in comparison with face-to-face similar braces. In X-braced frames, cyclic and failure behaviors of built-up face-to-face models are more desirable than similar back-to-back braces in general.

Energy dissipation demand of compression members in concentrically braced frames

  • Lee, Kangmin;Bruneau, Michel
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.345-358
    • /
    • 2005
  • The response of single story buildings and other case studies are investigated to observe trends in response and to develop a better understanding of the impact of some design parameters on the seismic response of CBF. While it is recognized that many parameters have an influence on the behavior of braced frames, the focus of this study is mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, it is found that a bracing member designed with bigger R and larger KL/r results in lower normalized cumulative energy, i.e., cumulative compressive energy normalized by the corresponding tensile energy (${\sum}E_C/E_T$), in both cases.

Effects of uncertainties on seismic behaviour of optimum designed braced steel frames

  • Hajirasouliha, Iman;Pilakoutas, Kypros;Mohammadi, Reza K.
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.317-335
    • /
    • 2016
  • Concentrically braced steel frames (CBFs) can be optimised during the seismic design process by using lateral loading distributions derived from the concept of uniform damage distribution. However, it is not known how such structures are affected by uncertainties. This study aims to quantify and manage the effects of structural and ground-motion uncertainty on the seismic performance of optimum and conventionally designed CBFs. Extensive nonlinear dynamic analyses are performed on 5, 10 and 15-storey frames to investigate the effects of storey shear-strength and damping ratio uncertainties by using the Monte Carlo simulation method. For typical uncertainties in conventional steel frames, optimum design frames always exhibit considerably less inter-storey drift and cumulative damage compared to frames designed based on IBC-2012. However, it is noted that optimum structures are in general more sensitive to the random variation of storey shear-strength. It is shown that up to 50% variation in damping ratio does not affect the seismic performance of the optimum design frames compared to their code-based counterparts. Finally, the results indicate that the ground-motion uncertainty can be efficiently managed by optimizing CBFs based on the average of a set of synthetic earthquakes representing a design spectrum. Compared to code-based design structures, CBFs designed with the proposed average patterns exhibit up to 54% less maximum inter-storey drift and 73% less cumulative damage under design earthquakes. It is concluded that the optimisation procedure presented is reliable and should improve the seismic performance of CBFs.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • 제3권3호
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.

비선형 동적 해석을 통한 X형 가새골조 내 가새 부재의 에너지 소산 (Energy Dissipation Demand of Braces Using Non-linear Dynamic Analyses of X-Braced Frame)

  • 이강민
    • 한국강구조학회 논문집
    • /
    • 제15권4호통권65호
    • /
    • pp.379-388
    • /
    • 2003
  • 철골가새골조 내 가새 부재의 에너지 소산 등의 이력 특성을 조사하기 위하여 비선형 구조해석 프로그램인 DRAIN-2DX를 이용한 단층 구조물의 동적 해석을 수행하였다. 가새 부재의 세장비(KL/r) 및 구조물 반응 수정 계수(R)을 변수로 15개의 가새 부재가 설계되었고 인공지진을 포함 6개의 지진기록을 사용하여 구조해석을 수행하였다. 총 90개의 동적 해석 및 해석결과 비교 분석을 통하여 다음의 사실을 알 수 있었다. (1) 큰 반응 수정 계수(R)로 설계된 철골가새골조 내의 가새 부재가 구조물이 우수한 연성 거동을 통하여 큰 축적된 에너지 비$({\Sigma}E_C/E_T)$를 갖게 되리라 예상과는 달리 해석 결과 큰 R값으로 설계된 가새 부재가 좌굴 이후 심한 강도 저하를 보이고 작은 가새 부재력으로 설계되기 때문에 오히려 축적된 에너지 비$({\Sigma}E_C/E_T)$가 작았다. (2) 해석 결과 Lee and Bruneau (2002)에 의해 수집된 실험 결과들을 근거로한 실험 자료, 모두 세장한 가새 부재가 대부분의 경우 더 큰 연성을 갖기는 하지만 작은 축적된 에너지 비$({\Sigma}E_C/E_T)$를 갖고 있다.