비내진중심가새골조의 보강 필요성

Necessity of Seismic Retrofit of Non-seismic Concentrically Braced Frames

염 희 진* Yeum, Hee-Jin

유 정 한** Yoo, Jung-Han

1. 서론

특수중심가새골조는 건축구조물에서 횡하중 저항 시스템으로 흔히 사용되며, 이 시스템은 횡 하중에 대해서 주로 대각 가새의 반복적인 인장항복·압축 좌굴을 통해 비탄성 변형을 수용하고 에너지를 소 산한다. 비교적 경제적이며 높은 횡 강성을 갖는 특 수중심가새골조는 다양한 구조물에 적용되어왔으 며, 적합하게 설계된다면 지진 내습시 상당한 연성 능력을 발휘할 수 있다. 특수중심가새골조에 대한 국내외 수많은 실험적 연구를 통해 접합부, 가새, 골조부재의 설계법 등이 발전되었고, 특히 1988년 건설부 주관 내진설계규준 제정 전후로 많은 변화 가 있었다. 현 기준^{1,3)}에서는 과거에 없었던 가새 및 골조 부재의 세장비, 폭두께비, 가새 단부 여유 길이 등에 대한 제한값을 설정함으로써 지진 발생 시 접합부와 가새의 조기 파단을 방지하고, 연성 거 동을 할 수 있게 설계되도록 규정하였다. 두드러진 차이로는 모든 부재와 접합부를 지진하중(The Reduced Seismic Loads)이 아닌 가새의 예상내력 (The Expected Brace Capacity)으로 설계하는 것 이며, 이로써 골조 결함을 최소화하도록 규정하였 다. 최근 워싱턴대학교 연구진은 중·대규모 지진 에 노출된 미국 서부 해안의 구조물을 대상으로 조 사를 실시하였고, 1988년 이전에 설계된 13개의 중 심가새골조에 대하여 내진 성능을 평가하였다. 워싱 턴대학교의 연구와 본 기사에서는 이러한 1988년 이전에 설계된 중심가새골조를 비내진중심가새골조 (Non-Seismic Concentrically Braced Frames, NCBFs)라 칭한다⁴⁾.

워싱턴대학교에서 실시된 비내진중심가새골조의 실험 결과, 현 설계법에 의해 설계된 특수중심가새 골조에 비해 내진 성능이 현저히 떨어지는 결과를 보였고 보수·보강의 필요성을 강조하였다^{5.6)}. 본

^{* ㈜}센구조연구소 Sen Structural Engineers Co.,Ltd.

^{**} 서울과학기술대학교 건축학부 School of Architecture, Seoul National University of Science & Technology

기사에서는 비내진중심가새골조에 대해서 소개하 고, 실험적 연구를 통한 골조의 내진 성능을 평가하 여 1988년 이전에 설계된 중심가새골조에 대한 보 강 필요성에 대해 기술하고자 한다.

2. 비내진중심가새골조

2.1 1988년 전후 가새골조의 설계법 비교

아래의 〈Table 1〉은 1988년 이전의 가새골조 설 계 고려사항과 현 기준의 고려사항³⁾을 간략히 비교 한 것이다. 현 기준에서는 모든 부재와 접합부를 지 진하중이 아닌 가새의 예상내력으로 설계하며, 과 거 기준은 부재의 세장비와 폭두께비 제한을 적용 하지 않는다. 이는 가새가 반복적인 인장항복·압 축좌굴을 통해 에너지를 소산하는 동안 골조 부재 및 접합부가 탄성상태를 유지할 수 없고, 가새가 충 분한 연성거동을 할 수 없게 설계된다는 것을 방증 한다. 현재 구조물에 이와 같이 위험에 노출된 비내 진중심가새골조가 존재하고, 이러한 골조는 보강이 시급한 실정이다.

(Table 1) Comparison of past and present design consideration of special concentrically braced frames

Division	Before 1988	Current Standard ³⁾	
Slendeness ratio of Brace	No limitaion	$KL/r \le 4\sqrt{E/F_y}$	
Width-thickness ratio of Brace	No limitaion	Requirement of seismic-compact sectioin	
Width-thickness ratio of frame element	No limitaion	Requirement of seismic-compact sectioin	
Free length of brace element end	No limitaion	Twice of gusset thickness	
Design of bracing connection	Design for Seismic action	Design for brace capacity	
Design of frame element	Design for Seismic action	Design for brace capacity	

이와 같은 방법으로 설계된 비내진가새골조의 특 징과 사례조사, 실험 등을 통한 워싱턴대학교의 연 구 결과^{5,6)}를 검토하고, 비내진가새골조의 결함과 보강 방법 등에 대하여 기술한다.

2.2 비내진가새골조 사례조사

워싱턴대학교 연구진은 미국 서부 해안 강진지역 의 12개 건물에서 존재하는 가새골조에 대해 분석 하였다. 비내진중심가새골조의 사례건물은 〈Table 2〉와 같다⁴.

〈Table 2〉의 조사된 건물을 보면, 건물의 높이는 1~9층으로 다양하지만, 2~4층에 가새골조가 위치 한 경우가 약 73%로 가장 많다. 이는 당시에 중심 가새골조가 주로 저층건물에 대한 횡저항 시스템으 로 사용된 것을 방증한다. 사례 건물들이 사무소, 의료시설, 상업시설, 연구시설, 학교시설 등 다양한 용도로 이용된 것으로 보아 중심가새골조가 당시에 도 폭넓게 이용된 것으로 볼 수 있다.

〈Table 2〉에서 보듯이 다양한 단면을 가진 가새 가 이용되었지만 70% 이상의 건물에서 각형강관 가 새가 이용되고 있는 것을 확인할 수 있다. 5층 이하 의 대부분 건물에서는 V-형 가새골조의 형태를 갖 고 있으며, 대각 가새골조와 V-형 가새골조가 가장 많이 이용된 가새골조형태이다.

2.3 비내진가새골조 접합부 형태

각형강관과 원형강관으로 구성된 모든 가새는 거 셋 플레이트와 슬롯트 용접, 모살 용접으로 접합되 어있다. 〈Fig. 1〉(a)와(b)는 대각 가새골조의 접합 부 중에서 보의 플랜지 한 쪽 면을 절단하여 쉬어탭 을 거셋 플레이트와 보 웨브 사이에 접합한 형태의 비내진중심가새골조 접합부의 상세를 나타낸다. 이 러한 접합부는 비내진중심가새골조에서 대표적으로 사용되었으며, 거셋 플레이트는 직접적으로 보 플 랜지에 용접되어있고, 그 외의 부재간의 접합은 모 두 쉬어탭을 통해 이루어진다³⁾.

Completion date(YY,MM)	Floor	Brace type	Bracing shape	Connection type
83.10	3	Sqaure shape steel pipe, H-steel	diagonal brace frame, V-braced frame	Bolted shear tap
82.11	3,5	Sqaure shape steel pipe, Circular shape steel pipe	diagonal brace frame, V-braced frame	Shared gusset
88.01	2,3	Sqaure shape steel pipe, Circular shape steel pipe	diagonal brace frame, V-braced frame	Shared gusset
80.09	4	Sqaure shape steel pipe, H-steel	diagonal brace frame, V-braced frame	Connect to beam
80.06	8	Angle steel	diagonal brace frame, X-braced frame	Whole welded, Bolted shear tap, Boleted end plate
86.04	3	Sqaure shape steel pipe	diagonal brace frame, V-braced frame	Welded shear tab
88.10	1	Angle steel	X-braced frame	Boleted end plate
83.05	2	Sqaure shape steel pipe,	V-braced frame	Whole welded
74.07	6	H-steel	diagonal brace frame, X-braced frame	Double gusset
82.06	9	H-steel	diagonal brace frame, multi- story X-braced frame Double gusset	
92.02	2,3	Sqaure shape steel pipe,	V-braced frame	Welded shear tab
86.08	4	Sqaure shape steel pipe,	V-braced frame	Bolted-double angle steel

(Table 2) Example of Non-seismic concentrically braced frame

비내진중심가새골조의 접합부는 용접 및 볼트접 합의 결함 외에도 거셋 플레이트의 크기가 작고, 가 새가 세장한 단면을 가지며, 거셋 플레이트의 소성 회전을 발휘하기 위한 가새부재 끝단과 거셋의 구속 선 사이에 충분한한 여유길이를 갖추지 못 한다. 따 라서 시스템의 성능을 저하시킬 수 있는 소지가 다 분하여 이에 대한 평가와 보강이 시급한 실정이다.

(a) Welded shear tap connection

3. 실험 결과

3.1 실험 개요

실험체는 사례조사로부터 얻어진 접합부 결함을 반영하여 워싱턴대학교의 실험실 조건에 따라 제작 되었다. 접합부 결함은 앞서 설명한 사례건물들의 접합부 형식처럼 보 플랜지를 절단하여 쉬어탭으로 연결한 것을 말한다. 본 기사에서는 〈Fig. 1 (a)〉의 용접 쉬어탭 접합부 사례를 반영한 NCBF1 실험체⁵⁾ 와 〈Fig. 1 (b)〉의 볼트 쉬어탭 접합부 사례를 반영 한 NHSS-B1 실험체⁶⁾의 실험을 기술하고자 한다. 실험체의 접합부 상세는 〈Fig. 2〉와 같다.

(a) Detail drawing of NCBF1 connection

(b) Detail drawing of NHSS-B1 connection(Fig. 2) Detail of NCBF experimental specimen in University of Washington

3.1.1 DCR(Demand-Capacity Ratio)

UFM(Uniform Force Method)을 이용하여 각 부 재의 분배되는 요구하중(Demand)을 결정하고, AISC를 이용하여 골조의 한계상태에 대한 내력 (Capacity)을 정의한다. 이렇게 정의된 요구하중과 내력을 통해 NCBF1, NHSS-B1 실험체의 DCR (Demand- Capacity Ratio)을 산정한 결과는 〈Table 3>에 나타내었다^{5,6)}. DCR>1인 경우의 한계상태는 실제 실험체의 한계상태로 파단이 발생할 수 있다 는 것을 의미하며, DCR이 가장 높은 한계상태로의 부재 파단이 발생할 가능성이 크다. 다시 말해, 실 험체 반복가력시 〈Table 3〉에서 음영으로 표시한 최대값에 해당하는 한계상태로의 파단이 발생할 가 능성이 높고, 최소값에 해당하는 한계상태로의 파 단 가능성이 가장 낮다는 것이다.

{Table 3> DCR(Demand-Capacity Ratio) of specimens

Limit state	NCRE1	NHSS-R1
	NCDET	
Net section of brace	1.26	1.20
Block shear of brace	1.14	1.10
Block shear of gusset plate	1.16	0.62
Yielding of Whitmore gusset plate	1.33	0.75
Rupture of Whitmore gusset plate	_	0.58
Buckling of gusset plate	0.74	0.38
Weld failure of brace-gusset plate	0.92	0.83
Base metal failure of brace-gusset plate (heat-affected zone)	-	0.83
Shear yielding of gusset plate	1.16	0.96
Weld Failure of beam-gusset plate	1.55	0.64
Wed failure of shear tab-gusset/beam	1.08	-
Weld failure of shear tab-column	0.65	-
Local buckling of brace	2.04	-
Bolt shear of column-gusset plate	-	1.90
Bolt shear of colunm-beam	-	1.56
Bolt bearing of column-gusset plate	_	0.98
Bolt bearing of column-beam	_	1.73

3.2 실험 조건

3.2.1 실험체 셋업

실험체의 셋업은 〈Fig. 3〉과 같으며, 실험체는 단층--단경간 대각 가새골조로 제작되었다. 층고는 3.6m이고, 기둥 간격 역시 중심에서 중심까지 3.6m 이다. 실험체는 H형 단면을 갖는 보(W16×45)와 기 둥(W12×72), 각형강관 단면을 갖는 가새(NCBF1은 HSS7×7×1/4, NHSS-B1은 HSS5×5×3/8)로 구 성되었다.

각 기둥 하단부의 이동단(Roller end), 보 중앙부 에 고정단(Fixed end)로 지지되었으며, 가새의 면 외 좌굴을 유도하기 위하여 가새에 면외 방향으로 의 편심길이 0.375mm와 보·기둥에 면외구속 장치 를 적용하였다. 즉, 보와 기둥의 면외 모멘트를 방 지하기위해 〈Fig. 3〉과 같이 4개소의 위치에 면외 방향으로의 변위를 구속하였다.

(Fig. 3) Specimen setup

3.2.2 하중 이력

기둥 하단부의 치올림(Uplift)을 방지하고, 실제 와 비슷한 조건으로 바닥 하중을 시뮬레이션하기 위하여 약 2,000kN의 중력 하중이 각 기둥에 적용 되었다. ATC 24를 기반으로 횡 가력기에 적용된 하 중 이력은 항복이 예상되는 시점인 횡 변위 약 16mm에서의 회전각 θ_y에 의해 산정되었다. 실험체 에 적용된 하중 이력은 〈Fig. 4〉와 같으며, 반복가 력을 통한 응답을 추출하였다.

3.3. 결과 분석

3.3.1 용접 쉬어탭 접합부를 갖는 비내진중심가 새골조 NCBF1

NCBF1 실험체는 용접 쉬어탭을 공유하여 보-기 등-거셋 플레이트를 접합하는 대표적인 비내진중심 가새골조의 접합부 형태를 반영하였다. 이 실험체 의 가장 큰 결함은 가새의 폭두께비라고 할 수 있는 데, 가새(HSS7×7×1/4)의 폭두께비는 27로 조사 된 골조사례의 가새 중에 가장 큰 값을 갖고 있다. 〈Table 3〉 DCR 결과를 보면, 가새의 국부좌굴 한계상태에 대한 DCR이 2.04로 전체 한계상태에 대한 DCR 평균값인 1.18보다 약 1.7배 높다. 이는 이 실험체가 횡력에 대하여 가새가 국부좌굴이 발 생할 위험에 노출되어있다는 것을 방증한다. 두 번 째로 큰 DCR을 갖는 한계상태는 보-거셋 플레이트 용접부(1.55)로 가새골조의 연성 거동에 영향을 가 장 많이 미치는 가새와 접합부가 취약하다는 것을 알 수 있다.

NCBF1 실험체의 〈Fig. 4〉와 같은 변위하중을 가 력했을 때, 골조의 응답을 나타낸 것이 〈Fig. 5〉이 다. 하중-횡 변형률 곡선에서 보듯이, 20 Cycle(횡 변형률 -0.81%, 가새 압축)의 변형률에서 가새 파 단이 발생했다.

〈Fig. 5〉Response curve of load-flexural
 strain of NCBF1

이와 같은 가새 조기 파단의 원인은 가새 파단 이 전인 19 Cycle(횡 변형률 -0.83%, 가새 압축)에서 이미 쉬어탭-기둥 용접부에 파괴가 발생하여 가새 파단을 가속화한 것도 있지만, 근본적으로 가새 단 면의 세장함에서 기인한 국부좌굴이다. 이러한 실 험은 DCR 분석과 합치하는 결과를 보였으며, 가새 조기 파단이라는 연성 거동에 치명적이고 내진 성 능을 저하시키는 결과를 보였다.

3.3.2 볼트 쉬어탭 접합부를 갖는 비내진중심가 새골조 NHSS-B1

NHSS-B1 실험체가 NCBF1 실험체와 다른 주요 차이점으로 〈Fig. 2 (b)〉에서 보듯이 7개 볼트 접합 과 2배 두꺼운 거셋 플레이트 두께(19.05mm)라고 할 수 있다. 쉬어탭은 NCBF1과 마찬가지로 기둥 플 랜지에 완전용입용접으로 접합되어있지만, 보의 웨 브와 거셋 플레이트와의 접합은 7개 볼트 접합이 전 부이다.

⟨Table 3⟩에서 NCBF1과 같은 방법으로 산정된 NHSS-B1 실험체의 DCR 결과를 보면, 접합부의 볼 트전단 한계상태에 대한 DCR이 1.90으로 전체 한 계상태에 대한 DCR 평균값인 1.00보다 1.9배 높다.

거셋 플레이트의 좌굴 한계상태에 대한 DCR은 0.38로 가장 작았으며, 거셋 플레이트가 소성회전 을 발휘하도록 요구하는 현 설계기준을 충족시키지 못 한다. 또한, 가새가 거셋 플레이트에 슬롯트 용 접 접합되어있음에도 불구하고 순단면 보강이 되어 있지 않아 순단면 파괴 한계상태에 대한 DCR도 또 한 1.20으로 높은 수치이다.

〈Fig. 6〉Response curve of load-flexural
 strain of NHSS-B1

NHSS-B1 실험체는 NCBF1 실험의 후행으로 실 시되었다. NCBF1 실험에서 가새의 조기 파단으로 골조의 비탄성 변형 능력이 현저히 떨어지는 결과 를 보였다. 그러나 NHSS-B1 실험은 쉬어탭과 거셋 플레이트/보 사이의 볼트 접합부에 대한 내진 성능 평가를 위해 실시되었기 때문에 기존의 NCBF1 가 새 단면인 HSS7×7×1/4가 아닌 조밀단면 HSS5× 5×3/8로 실험체를 계획하였다. NHSS-B1은 가새 가 조밀단면이기 때문에 가새의 조기 파단이 발생 하지 않아 상당한 비탄성 변형 수용할 수 있을 것이 라 예상되었고, 실제로 상당히 우수한 내진성능을 보였다.

〈Fig. 6〉에서의 NHSS-B1 골조 응답을 보면, 이 실험체는 가새단부의 여유길이 고려 제외, 순단 면 미보강, 용접의 낮은 인성, 볼트 베어링·볼트 전단에 대한 결함이 있음에도 불구하고 우수한 거 동을 보였다. 변형률 범위 4.9%, 강도 범위 2,371 kN, 최종 파괴모드로써 가새 파단으로 연성거동을 갖출 수 있었던 요인은 볼트구멍 신장(Bolt hole elongation)과 볼트의 변형으로 볼 수 있다.

{Fig. 7> Rotation of beam and column
 when brace compressed

그 밖에 골조 부재도 변형 수준을 증가시키는데 영향을 주었다. 〈Fig. 7〉은 가새 압축시 기둥과 보 의 회전을 표현한 것이다. 여기서 기둥의 플랜지와 보의 웨브가 항복면이 넓게 퍼져있는 것을 볼 수 있 다. 이는 가새의 면외방향으로의 좌굴과 길이가 커 짐에 따라, 접합부에 더 많은 회전이 발생하고, 이 회전은 〈Fig. 7〉과 같이 보와 기둥 부재에 비틀림을 유발하였다는 것을 의미한다. 이러한 비틀림으로 인해 골조는 더 많은 에너지를 소산할 수 있고, 결 국 쉬어탭 접합부로 인해 모든 부재요소가 회전에 대한 유연도(Flexibility)를 갖출 수 있었던 것이다.

3.3.3 실험결과 분석

용접 쉬어탭을 공유하는 접합부 형태를 갖춘 NCBF1 실험체의 경우, 가새의 조기파단과 접합부 의 용접 파괴 등으로 인해 반복가력에 대하여 낮은 수준의 내진 거동을 보였다.

- 가새 중앙부의 심한 국부좌굴과 이로 인한 가
 새의 파단 때문에 낮은 수준의 횡 변형만을 수
 용할 수 있었다. 접합부의 결함보다 세장 단면
 을 갖는 가새에 대한 위험이 더 크다는 것을
 방증한다.
- 순단면 미보강과 쉬어탭 용접의 결함은 시스템
 성능에 거의 영향을 주지 않았다.

볼트 쉬어탭을 공유하는 접합부 형태를 갖춘 NHSS-B1 실험체의 경우, 현 기준의 특수중심가새 골조와 동등한 수준의 성능을 발휘하였다. 실험체 DCR 분석 결과로 평가된 수많은 골조 결함에도 불 구하고, 아래와 같은 실험 결과를 보였다.

- DCR 분석 결과 볼트의 전단 파괴, 베어링 파 괴가 발생할 것이라 예상되었지만, 오히려 볼 트구멍 신장(Bolt hole elongation)과 볼트 변 형으로 인해 변형률·강도 범위가 높은 결과를 나타냈다. 결국 볼트구멍 신장으로 인해 골조 는 더 많은 비탄성 변형을 수용할 수 있었다.
- 가새 압축좌굴·인장항복을 통한 가새 파단이 발생하였으며, 이는 특수중심가새골조에서 지 진 내습시 가장 바람직한 형태의 파괴모드와 동일하다.

4. 맺음말

본 기사에서는 필자가 워싱턴대학교 연구진과 수 행한 일련의 해외협력 연구로써 1988년 이전에 설 계된 비내진중심가새골조에 대한 사례조사를 통해 실험체를 계획하고, 내진성능에 대해 평가한 내용 을 기술하였다. 특수중심가새골조에서 가장 기본이 되는 가새부재와 접합부 설계에 대해서, 과거 설계 법의 결함을 밝히고 보강의 필요성에 대한 이해를 돕고자 정리한 것이다. 앞서 분석한 두 개의 실험체 (NCBF1, NHSS-B1)는 각기 다른 단면의 가새부재 를 갖기 때문에 직접적인 비교가 곤란하다. 그러나 과거의 설계법에 의한 비내진중심가새골조는 용접 과 가새 단면의 결함으로 인해 내진 성능을 발휘하 지 못해 보강의 필요성을 설명하였다. 또한, 쉬어탭 의 볼트로 인해 골조가 상당한 연성 능력을 발휘하 고, 쉬어탭으로 인해 골조 전체의 유연도가 증가한 다는 실험 결과를 규명하였고, 용접부의 취약함을 확인하였다.

References

- AISC(2010), Steel Construction Manual 14th Edition, American Institute of Steel Construction
- AISC(2010), Seismic Provision for Structural Steel Buildings, American Institute of Steel Construction
- Korean Society of Steel Construction(2013), [Steel Structure Design Criteria of Load and Resistance Factor Design method]
- 4. Dan Sloat, Charles W. Roeder, Dawn E. Lehman, Jeffrey W. Berman(2013), Survey and Testing of Pre-1988 Braced Frame Structures From The West Coast of the United States, 5th International Conference on Advances in Experimental Structural Engineering
- Dan Sloat(2014), Evaluation and Retrofit of Non-Capacity Designed Braced Frames, Department of Civil Engineering, University of Washington
- Molly Johnson(2014), Seismic Evaluation of Bolted Connections in Non-Seismic Concentrically Braced Frames, Department of Civil Engineering, University of Washington