• Title/Summary/Keyword: Non-Residential Building

Search Result 81, Processing Time 0.021 seconds

Estimation Method of Energy Consumption by End-Use in Office Buildings based on the Measurement Data (계측데이터를 이용한 업무시설에서의 에너지용도별 사용량 추정방법 연구)

  • Kim, Sung-Im;Yang, In-Ho;Ha, Soo-Yeon;Lee, Soo-Jin;Jin, Hye-Sun;Suh, In-Ae;Song, Seung-Yeong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.165-176
    • /
    • 2020
  • The purpose of this study is to develop a estimation method of energy consumption by end-use in office buildings. For this, the current status of information on building energy use was investigated, and the domestic and foreign literature on the classification of energy use in non-residential buildings and the estimation method of energy use were reviewed. In addition, the characteristics of energy consumption by end-use were analyzed with measurement data of 48 office buildings in Seoul. As results, the annual and monthly estimation method of energy consumption by end-use in office buildings using public and measurement data was presented, and the applicability of the estimation method was examined by applying to sample office buildings.

The need for upgrading the seismic performance objectives

  • Kutanis, Mustafa;Boru, Elif Orak
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.401-414
    • /
    • 2014
  • The economic consequences of large earthquakes require a revolutionary change in the seismic performance objective of residential and commercial buildings. The majority of total construction costs consist of non-structural and architectural costs. Therefore, the aim of this research is to upgrade current Life Safety performance objectives and to offset adverse effects on country's economy after an occurrence of large earthquakes. However, such a proposal cannot easily prove the feasibility of cost-benefit analysis in structural design. In this paper, six generic reinforced concrete frames and dual system structures designed based on Turkish Seismic Code were used in cost analysis. The study reveals that load bearing structural systems with Immediate Occupancy performance level in seismic zones can be achieved with negligible costs.

Psychological lssues in the Design of Underground Facilities (지하공간 설계에 있어서의 심리적 요인에 대한 고찰)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.186-191
    • /
    • 1994
  • In recent decades, underground usage in urban areas has expanded from subways and utilities to include virtually every non-residential building function. Greater usage of underground space is envisioned in the more congested urban areas in the world such as Asia and Europe. This increasing interest in underground development is raising basic questions about whether people can work and live underground, and if so, what design techniques can sucessfully be employed. The actual experience of people in underground space, as well as general associations and image of the underground reveal predominantly negative attitudes. A number of design techniques have been suggested by researchers, or actually utilized by designers, to alleviate these potential problems for people in underground space. This paper identifies these psychological and physiological problems. In addition, design objective and possible solutions are briefly summarized. This is followed by a summary of special design problems and objectives related to road tunnels.

  • PDF

Engineering implications of the RC building damages after 2011 Van Earthquakes

  • Ozmen, Hayri Baytan;Inel, Mehmet;Cayci, Bayram Tanik
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.297-319
    • /
    • 2013
  • Two destructive earthquakes occurred on October 23 and November 9, 2011 in Van province of Turkey. The damage in residential units shows significant deviation from the expectation of decreasing damage with increasing distance to epicenter. The most damaged settlement Ercis has the same distance to the epicenter with Muradiye, where no damage occurred while relatively less damage observed in Van having half distance. These three cities seem to have resembling soil conditions. If the damages are evaluated: joint failures and insufficient lap splice lengths are observed to be the main causes of the total collapses in RC buildings. Additionally, low concrete strength, reinforcement detailing mistakes, soft story, heavy overhang, pounding and short columns are among other damage reasons. Examples of damages due to non-structural elements are also given. Remarkable points about seismic damages are: collapsed buildings with shear-walls, heavily damaged buildings despite adequate concrete strength due to detailing mistakes, undamaged two-story adobe buildings close to totally collapsed RC ones and undamaged structural system in buildings with heavily damaged non-structural elements. On the contrary of the common belief that buildings with shear-walls are immune to total collapse among civil engineers, collapse of Gedikbulak primary school is a noteworthy example.

A Study on the Non-residential Building Envelope Remodeling for Energy Efficiency (비주거용 건물의 외피 리모델링을 통한 에너지성능향상 방안에 관한 연구)

  • Jang, Hyun-Sook;Lee, Sang-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.6
    • /
    • pp.3-12
    • /
    • 2012
  • The slowdown of private building industry resulted in growth of remodeling market as a way to improve energy performance. Remodeling is considered more cost-effective and eco-friendly approach for energy efficient building than new construction. Since 2008, Seoul has promoted Building Retrofit Project (BRP) preponderantly to attract energy-saving renovation by supporting building owners to switch building system into energy-saving system when they remodel their old buildings. According to 2012 press release, 254 Private sectors participated in this green building project and annually reduced 41000ton of greenhouse gas emission, 14000TOE, which also result in 7.5 billion won energy cost savings per year. The paper focuses on the building envelope remodeling as a way to improve energy efficiency. Different components of the building envelope such as wall insulation, window, and shading, were applied to the baseline model and the comparison was analyzed to come up with the ideal solution. This study only assesses the building envelope as to suggest the way to redesign the better energy performing building. Offering solution focusing on the architectural feature is essential because it will provide basic information and standard when remodeling a building for energy efficiency, especially, for the nonresidential buildings used as rental offices.

Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds (건축물에너지효율등급 기밀시험이 등급에 미치는 영향분석)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Nam, Ariasae;Ju, Jung-Kyeong
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • The ventilation frequency of 0.5 times in residential facilities is applied mandatorily to the housing facilities containing more than 100 house units to improve the indoor air quality and create comfortable interior conditions and pleasantness for residents. The Building Energy Efficiency Rating system requires the implementation of leakage test based on ventilation frequency with the test results being reflected in the efficiency ratings, thereby stimulating the precise construction of the fittings in the periphery of windows and savings of energy that can be lost due to the infiltration air. The inspection results of the Building Energy Efficiency Rating at the site showed that the ventilation frequency was in the range between 0.63 and 0.71 and that the difference was found to have a significant effect on the amount of energy reduction. It is urgent to conduct the study on highly leakage-proof buildings and construction methods, along with the expansion of mandatory leakage-proof diagnosis of non-residential buildings, considering the mandatory ventilation frequency below 0.6 for passive houses under the European standards and the target set by Korea to introduce the passive house, the rigorous standard for energy efficiency in buildings and mitigating their ecological footprint, by 2017 and achieve the zero house by 2025.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

Assessment of Accident Level Based on Contract Amount by Type of Construction (공사유형별 건설수주액을 고려한 건설재해수준 평가기법)

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2021
  • The accident rate is obtained by dividing the number of accidents by the number of regular workers. In the case off construction work, however, the accident rates are not accurately figured out, because they use the approximate number of regular workers, which is estimated based on the amount of construction work and the labor ratio. In addition, the current accident rate estimation method does not reflect the characteristics of construction types, such as building, civil, plant, etc. This study is conducted with the aim of presenting a supplementary method of accident rate assessment that incorporates the characteristics of type of construction. For the purpose of this, correlation and regression analysis are executed to verify the relationships between number of accidents and the amount of construction contract, and several equations are derived which shows the relationship between the number of accidents by accident types and amount of constract by construction types. The result shows that the non-residential work amount and the number of accidents showed a proportional relationship, while the civil work amount and the number of accidents showed an inversely proportional relationship. The results of this research are expected to calibrate the construction accident rates and to be used as an auxiliary indicator to determine the trend of annual accident rates by comparing the values with usual years.

An Efficient Analytical Model for Floor Vibrations in Residential Buildings with Damping layer (방진층을 설치한 주거용 건축물 바닥판의 진동해석을 위한 효율적인 해석모형)

  • Lee, Dong-Guen;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.49-61
    • /
    • 2006
  • The floor impact sound insulations are installed frequently for reducing the floor impact sound into the floor slab of the residential buildings in recent years. Therefore the analytical FE model considering the insulation is needed for the sound and vibration analysis of the floor and it is necessary to use a refined finite element model fer considering the large number of modes involved dynamic responses. So it is very difficult to use FE model because of the tiresome task for constructing the FE model, taking a lot of times for analysis and the impossibility of using the proportional damping. The efficient analysis and modeling method are proposed to the dynamic analysis for the floor with damping layer in this study. The floor slabs and finished layers are modeled individually and the spring elements that mean damping layers used to connect two parts. The dynamic analysis by the $Newmark-{\beta}$ method is performed to solve the non-proportional damping problem due to the damping coefficient of insulations.

A Study on the POE (Post Occupancy Evaluation) according to the Residential Environment of Mixed-use Apartment Complexes In Seoul

  • Ha, Man Joon
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.197-212
    • /
    • 2020
  • In this study, POE(Post Occupancy Evaluation) evaluation indexes were selected into six categories through the consideration of theories and prior research. Therefore, qualitative supply can be achieved through POE according to the aspect of residential environment after the quantitative supply of mixed-use apartment complex by the population concentration in Seoul due to industrialization and urbanization. As the evaluation elements, detailed survey contents were selected for livability, convenience, comfort, safety, economy, and sociality. Based on the survey contents, six elements were evaluated and analyzed using Data coding and Likert scale after surveying 12 complexes (Urban areas and non-urban areas) in Seoul. As a result of the study, six categories selected as the POE showed that importance of quality of life and safety was developed in high recognition according to high satisfaction with convenience and safety. Sociality showed the lowest satisfaction in the following order : livability, comfort, economy and sociality. Residents' sense of community, interaction with neighborhood, etc., showed low satisfaction, and it seems that it is necessary to improve and supplement the system for the development of mixed-use apartment complex in the future. The detailed characteristics of livability showed high satisfaction of the living room, the front door and the main room which are main uses of housing, and low satisfaction in storage size. The analysis of convenience is that convenient public transportation was the highest, and educational environment and additional facilities were the lowest, showing the advantages and disadvantages of location characteristics. As a result of the analysis of comfort, satisfaction with the landscape area was low and it seems that green space is needed for the development of mixed-use apartment complex in the future. Lastly, regarding the safety, the satisfaction of the access control, the location of security office, etc. were high, however separation of circulation was low. Therefore, it is necessary to clearly separate the circulation between the residence and other facilities in the mixed-use apartment complex.