• Title/Summary/Keyword: Non-Prediction Algorithm

Search Result 221, Processing Time 0.028 seconds

Shipboard Fire Evacuation Route Prediction Algorithm Development (선박 화재시 승선자 피난동선예측을 위한 알고리즘 개발 기초연구)

  • Hwang, Kwang-Il;Cho, So-Hyung;Ko, Hoo-Sang;Cho, Ik-Soon;Yun, Gwi-Ho;Kim, Byeol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this study, an algorithm to predict evacuation routes in support of shipboard lifesaving activities is presented. As the first step of algorithm development, the feasibility and necessity of an evacuation route prediction algorithm are shown numerically. The proposed algorithm can be explained in brief as follows. This system continuously obtains and analyzes passenger movement data from the ship's monitoring system during non-disaster conditions. In case of a disaster, evacuation route prediction information is derived using the previously acquired data and a prediction tool, with the results provided to rescuers to minimize casualties. In this study, evacuation-related data obtained through fire evacuation trials was filtered and analyzed using a statistical method. In a simulation using the conventional evacuation prediction tool, it was found that reliable prediction results were obtained only in the SN1 trial because of the conceptual and structural nature of the tool itself. In order to verify the validity of the algorithm proposed in this study, an industrial engineering tool was adapted for evacuation characteristics prediction. When the proposed algorithm was implemented, the predicted values for average evacuation time and route were very similar to the measured values with error ranges of 0.6-6.9 % and 0.6-3.6 %, respectively. In the future, development of a high-performance evacuation route prediction algorithm is planned based on shipboard data monitoring and analysis.

Prediction of Melting Point for Drug-like Compounds Using Principal Component-Genetic Algorithm-Artificial Neural Network

  • Habibi-Yangjeh, Aziz;Pourbasheer, Eslam;Danandeh-Jenagharad, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.833-841
    • /
    • 2008
  • Principal component-genetic algorithm-multiparameter linear regression (PC-GA-MLR) and principal component-genetic algorithm-artificial neural network (PC-GA-ANN) models were applied for prediction of melting point for 323 drug-like compounds. A large number of theoretical descriptors were calculated for each compound. The first 234 principal components (PC’s) were found to explain more than 99.9% of variances in the original data matrix. From the pool of these PC’s, the genetic algorithm was employed for selection of the best set of extracted PC’s for PC-MLR and PC-ANN models. The models were generated using fifteen PC’s as variables. For evaluation of the predictive power of the models, melting points of 64 compounds in the prediction set were calculated. Root-mean square errors (RMSE) for PC-GA-MLR and PC-GA-ANN models are 48.18 and $12.77{^{\circ}C}$, respectively. Comparison of the results obtained by the models reveals superiority of the PC-GA-ANN relative to the PC-GA-MLR and the recently proposed models (RMSE = $40.7{^{\circ}C}$). The improvements are due to the fact that the melting point of the compounds demonstrates non-linear correlations with the principal components.

Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory (퍼지이론과 SVM 결합을 통한 기업부도예측 최적화)

  • Choi, So-Yun;Ahn, Hyun-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.3
    • /
    • pp.155-165
    • /
    • 2015
  • Bankruptcy prediction has been one of the important research topics in finance since 1960s. In Korea, it has gotten attention from researchers since IMF crisis in 1998. This study aims at proposing a novel model for better bankruptcy prediction by converging three techniques - support vector machine(SVM), fuzzy theory, and genetic algorithm(GA). Our convergence model is basically based on SVM, a classification algorithm enables to predict accurately and to avoid overfitting. It also incorporates fuzzy theory to extend the dimensions of the input variables, and GA to optimize the controlling parameters and feature subset selection. To validate the usefulness of the proposed model, we applied it to H Bank's non-external auditing companies' data. We also experimented six comparative models to validate the superiority of the proposed model. As a result, our model was found to show the best prediction accuracy among the models. Our study is expected to contribute to the relevant literature and practitioners on bankruptcy prediction.

Adaptive Input Traffic Prediction Scheme for Absolute and Proportional Delay Differentiated Services in Broadband Convergence Network

  • Paik, Jung-Hoon;Ryoo, Jeong-Dong;Joo, Bheom-Soon
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.227-237
    • /
    • 2008
  • In this paper, an algorithm that provides absolute and proportional differentiation of packet delays is proposed with the objective of enhancing quality of service in future packet networks. It features an adaptive scheme that adjusts the target delay for every time slot to compensate the deviation from the target delay, which is caused by prediction error on the traffic to arrive at the next time slot. It predicts the traffic to arrive at the beginning of a time slot and measures the actual arrived traffic at the end of the time slot. The difference between them is utilized by the delay control operation for the next time slot to offset it. Because the proposed algorithm compensates the prediction error continuously, it shows superior adaptability to bursty traffic and exponential traffic. Through simulations we demonstrate that the algorithm meets the quantitative delay bounds and is robust to traffic fluctuation in comparison with the conventional non-adaptive mechanism. The algorithm is implemented with VHDL on a Xilinx Spartan XC3S1500 FPGA, and the performance is verified under the test board based on the XPC860P CPU.

  • PDF

Least Squares Based Adaptive Motion Vector Prediction Algorithm for Video Coding (동영상 압축 방식을 위한 최소 자승 기반 적응 움직임 벡터 예측 알고리즘)

  • Kim, Ji-hee;Jeong, Jong-woo;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1330-1336
    • /
    • 2004
  • This paper addresses an adaptive motion vector prediction algorithm to improve the performance of video encoder. The block-based motion vector is characterized by non-stationary local statistics so that the coefficients of LS (Least Squares) based linear motion can be optimized. However, it requires very expensive computational cost. The proposed algorithm using LS approach with spatially varying motion-directed property adaptively controls the coefficients of the motion predictor and reduces the computational cost as well as the motion prediction error. Experimental results show the capability of the proposed algorithm.

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF

Performance improvement and Realtime implementation in CELP Coder (CELP 보코더의 성능 개선 및 실시간 구현)

  • 정창경
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.199-204
    • /
    • 1994
  • In this paper, we researched abut CELP speech coding algorithm using efficlent pseudo-stochastic block codes, adaptive-codebook and improved fixed-gain codebook. The pseudo-stochastic block codes refer to stochastically populated block codes in which the adjacent codewords in an innovation codebook are non-independent. The adaptive-codebook was made with previous prediction speech data by storage-shift register. This CELP coding algorithm enables the coding of toll quality speech at bit rates from 4.8kbits/s to 9.6 kbits/s. This algorithm was realized TMS320C30 microprocessor in realtime.

  • PDF

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF

Pre-Evaluation for Prediction Accuracy by Using the Customer's Ratings in Collaborative Filtering (협업필터링에서 고객의 평가치를 이용한 선호도 예측의 사전평가에 관한 연구)

  • Lee, Seok-Jun;Kim, Sun-Ok
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.187-206
    • /
    • 2007
  • The development of computer and information technology has been combined with the information superhighway internet infrastructure, so information widely spreads not only in special fields but also in the daily lives of people. Information ubiquity influences the traditional way of transaction, and leads a new E-commerce which distinguishes from the existing E-commerce. Not only goods as physical but also service as non-physical come into E-commerce. As the scale of E-Commerce is being enlarged as well. It keeps people from finding information they want. Recommender systems are now becoming the main tools for E-Commerce to mitigate the information overload. Recommender systems can be defined as systems for suggesting some Items(goods or service) considering customers' interests or tastes. They are being used by E-commerce web sites to suggest products to their customers who want to find something for them and to provide them with information to help them decide which to purchase. There are several approaches of recommending goods to customer in recommender system but in this study, the main subject is focused on collaborative filtering technique. This study presents a possibility of pre-evaluation for the prediction performance of customer's preference in collaborative filtering before the process of customer's preference prediction. Pre-evaluation for the prediction performance of each customer having low performance is classified by using the statistical features of ratings rated by each customer is conducted before the prediction process. In this study, MovieLens 100K dataset is used to analyze the accuracy of classification. The classification criteria are set by using the training sets divided 80% from the 100K dataset. In the process of classification, the customers are divided into two groups, classified group and non classified group. To compare the prediction performance of classified group and non classified group, the prediction process runs the 20% test set through the Neighborhood Based Collaborative Filtering Algorithm and Correspondence Mean Algorithm. The prediction errors from those prediction algorithm are allocated to each customer and compared with each user's error. Research hypothesis : Two research hypotheses are formulated in this study to test the accuracy of the classification criterion as follows. Hypothesis 1: The estimation accuracy of groups classified according to the standard deviation of each user's ratings has significant difference. To test the Hypothesis 1, the standard deviation is calculated for each user in training set which is divided 80% from MovieLens 100K dataset. Four groups are classified according to the quartile of the each user's standard deviations. It is compared to test the estimation errors of each group which results from test set are significantly different. Hypothesis 2: The estimation accuracy of groups that are classified according to the distribution of each user's ratings have significant differences. To test the Hypothesis 2, the distributions of each user's ratings are compared with the distribution of ratings of all customers in training set which is divided 80% from MovieLens 100K dataset. It assumes that the customers whose ratings' distribution are different from that of all customers would have low performance, so six types of different distributions are set to be compared. The test groups are classified into fit group or non-fit group according to the each type of different distribution assumed. The degrees in accordance with each type of distribution and each customer's distributions are tested by the test of ${\chi}^2$ goodness-of-fit and classified two groups for testing the difference of the mean of errors. Also, the degree of goodness-of-fit with the distribution of each user's ratings and the average distribution of the ratings in the training set are closely related to the prediction errors from those prediction algorithms. Through this study, the customers who have lower performance of prediction than the rest in the system are classified by those two criteria, which are set by statistical features of customers ratings in the training set, before the prediction process.

Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population

  • Ryu, Seunghyong;Lee, Hyeongrae;Lee, Dong-Kyun;Park, Kyeongwoo
    • Psychiatry investigation
    • /
    • v.15 no.11
    • /
    • pp.1030-1036
    • /
    • 2018
  • Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.