1 |
J. L. Bellovary, D. E., Giacomino, & M. D. Akers, A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education, pp. 1-42, 2007.
|
2 |
S. Kim, C. S. Park, & S. M. Jeon, Default Decisions of FIs and Endogeneity Problems in Default Prediction. Journal of Business Research, Vol. 26, No. 1, pp. 99-132, 2011.
|
3 |
J. M. Park, Bankruptcy Prediction using Support Vector Machine. Korea Advanced Institute of Science and Technology, Master's Thesis, 2003.
|
4 |
W. H. Beaver, Financial ratios as predictors of failure. Journal of Accounting Research, Vol. 4, pp. 71-111, 1966.
DOI
ScienceOn
|
5 |
E. I. Altman, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, Vol. 23, No. 4, pp. 589-609, 1968.
DOI
|
6 |
J. A. Ohlson, Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, pp. 109-131, 1980.
|
7 |
M. E. Zmijewski, Methodological issues related to the estimation of financial distress predictionmodels. Journal of Accounting Research, pp. 59-82, 1984.
|
8 |
R. O. Edmister, An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis, Vol. 7, No. 2, pp. 1477-1493, 1972.
DOI
ScienceOn
|
9 |
M. D. Odom, & R. Sharda, A neural network model for bankruptcy prediction. In proceedings of the International Joint Conference on Neural networks, Vol. 2, pp. 163-168, 1990.
|
10 |
K. Y. Tam, & M. Y. Kiang, Managerial applications of neural networks: the case of bank failure predictions. Management science, Vol. 38, No. 7, pp. 926-947, 1992.
DOI
ScienceOn
|
11 |
K. C. Lee, A Comparative Study on the Bankruptcy Prediction Power of Statistical Model and AI Models: MDA, Inductive Learning, Neural Network. Journal of The Korean Operations Research and Management Science Society , Vol. 18, No. 2, pp. 57-81, 1993.
|
12 |
K. Y. Kim, G. R. Lee, & S. W. Lee, A Comparative Analysis of Artificial Intelligence System and Ohlson model for IPO firm's Stock Price Evaluation. Journal of Digital Convergence, Vol. 11, No. 5, pp. 145-158, 2013.
DOI
ScienceOn
|
13 |
K. K. Seo, Development of a Sales Prediction Model of Electronic Appliances using Artificial Neural Networks. Journal of Digital Convergence, Vol. 12, No. 11, pp. 209-214, 2014.
DOI
|
14 |
C. Serrano-Cinca, Self organizing neural networks for financial diagnosis. Decision Support Systems, Vol. 17, No. 3, pp. 227-238, 1996.
DOI
ScienceOn
|
15 |
J. Yang, & V. Honavar, Feature subset selection using a genetic algorithm. Computer Science Technical Reports, Paper 156, 1997.
|
16 |
K. S. Shin, & Y. J. Lee, A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, Vol. 23, No. 3, pp. 321-328, 2002.
DOI
ScienceOn
|
17 |
K. S. Shin, T. S. Lee, & H. J. Kim, An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, Vol. 28, No. 1, pp. 127-135, 2005.
DOI
ScienceOn
|
18 |
H. Ahn, & K. J. Kim, Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Applied Soft Computing, Vol. 9, No. 2, pp. 599-607, 2009.
DOI
ScienceOn
|
19 |
L. A. Zadeh, Fuzzy sets. Information and Control, Vol. 8, No. 3, pp. 338-353, 1965.
DOI
|
20 |
S. H. Lee, K. I. Moon, & S. J. Lee, Application of Fuzzy Logic in Scenario Based Language Learning. Journal of Digital Convergence, Vol. 11, No. 2, pp. 221-228, 2013.
DOI
|
21 |
L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, Vol. 1, pp. 3-28, 1978.
DOI
ScienceOn
|
22 |
M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, & B. Scholkopf, Support vector machines. IEEE Intelligent Systems and Their Applications, Vol. 13, No. 4, pp. 18-28, 1998.
DOI
|
23 |
M. Kim, The Application of Knowledge Integration Using Fuzzy Logic and Genetic Algorithms to Financial Market. Korea Advanced Institute of Science and Technology, Doctoral Thesis, 2004.
|
24 |
S. K. Pal, & P. K. Pramanik, Fuzzy measures in determining seed points in clustering. Pattern Recognition Letters, Vol. 4, No. 3, pp. 159-164, 1986.
DOI
ScienceOn
|
25 |
V. Vapnik, Statistical learning theory. Wiley, New York, 1998.
|
26 |
H. Ahn, K. J. Kim, & I. Han, Purchase Prediction Model using the Support Vector Machine. Journal of Intelligence and Information Systems, Vol. 11, No. 3, pp. 69-81, 2005.
|
27 |
S. W. Kim, & H. Ahn, Development of an Intelligent Trading System Using Support Vector Machines and Genetic Algorithms. Journal of Intelligence and Information Systems, Vol. 16, No. 1, pp. 71-92, 2010.
|
28 |
H. Ahn, & K. J. Kim, Corporate Bond Rating Using Various Multiclass Support Vector Machines. Asia Pacific Journal of Information Systems, Vol. 19, No. 2, pp. 157-178, 2009.
|
29 |
D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.
|
30 |
Y. Cha, G. Lee, J. Lee, D. Y. Wie, Optimization of the Distribution Plan and Multi-product Capacity using Genetic Algorithm. Journal of Digital Convergence, Vol. 12, No. 6, pp. 125-134, 2014.
DOI
|
31 |
F. E. Tay, & L. Cao, Application of support vector machines in financial time series forecasting. Omega, Vol. 29, No. 4, pp. 309-317, 2001.
DOI
ScienceOn
|
32 |
C. H. Jeon, Data Mining Techniques. Hannarae Publishing Co., Seoul, 2012.
|
33 |
C. C. Chang, & C. J. Lin, LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, pp. 27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/-cjlin/libsvm.
|