• Title/Summary/Keyword: Non-Newtonian

Search Result 328, Processing Time 0.028 seconds

The Effect of Oil Rheology on Film Thickness in Engine Journal Bearing (윤활유의 유동특성이 기관 저어널 베어링의 유막두께에 미치는 영향)

  • 이동호;장병주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • Effect of Newtonian and non-Newtonian oils on minimum ol film thickness in engine journal bearing were investigated at various oil viscosities. The influence of oil viscosity and engine operating conditions on minimum oil film thickness of main bearing and con-rod bearing was examined. Minimum oil film thickness for Newtonian oils increased uniformly with kinematic viscosity. But the correlation between kinematic viscosity and minimum oil film thickness was very poor for non-Newtonian oils. According to the straight-line regression analysis for non-Newtonian oils, high temperature high shear viscosity at 1 $1{\times}10^6Sec^{-1}$, $150^{\circ}C$ increase the coefficient of determination from 0.41 to 0.77. Con-rod bearing showed better correlation between minimum oil film thickness and engine operating conditions than main bearing.

  • PDF

Deformation Behavior of Bulk Amorphous Alloys During Hot Forming Process (열간성형공정에서 벌크 아몰퍼스 소재의 변형거동)

  • Lee Yong-Shin
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.696-703
    • /
    • 2004
  • The purpose of this study is to examine the bulk/sheet forming characteristics of bulk amorphous alloys in the super cooled liquid state. Recently it is reported that amorphous alloys exhibit stress overshoot/undershoot and non-Newtonian behaviors even in the super cooled liquid state. The stress-strain curves with the temperature-dependences as well as strain-rate dependence of Newtonian/non-Newtonian viscosities of amorphous alloys are obtained based on the previous experimental works. Then, those curves are directly used in the thermo-mechanical finite element analyses. Upsetting and deep drawing of amorphous alloys are simulated to examine the effects of process parameters such as friction coefficient, forming speed and temperature. It could be concluded that the superior formability of an amorphous alloy can be obtained by taking the proper forming conditions.

Flow Characteristics of Non-Newtonian Fluids in the Stenosed Branch Tubes (협착이 발생된 분기관내 비뉴턴유체의 유동특성 연구)

  • Suh, S.H.;Yoo, S.S.;Roh, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.307-316
    • /
    • 1996
  • The objective of present study is to obtain information on the stenosis effects in the branch tubes for industrial piping system and atherogenesis processing in human arteries. Numerical solutions for flows of Newtonian and non-Newtonian fluids in the branch tubes are obtained by the finite volume method. Centerline velocity and pressure along the bifurcated tubes for water, blood and aqueous Separan AP-273 solution are computed and the numerical results of blood and the Separan solution are compared with those of water. Flow phenomena in the stenosed branch tubes are discussed extensively and predicted effectively. The effects of stenosis on the pressure loss coefficients are determined.

  • PDF

Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.93-105
    • /
    • 2002
  • Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.

Thermal conductivity measurements of non-Newtonian fluids in a shear field (전단력 영역에서의 비뉴톤 유체의 열전도율 측정)

  • Lee, Dong-Ryeol;Irvine, Thomas F.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.584-595
    • /
    • 1998
  • An investigation was carried out to determine experimentally the thermal conductivities of non-Newtonian fluids in a shear field. Both time independent purely viscous and viscoelastic fluids were considered. A coaxial cylinder apparatus with a rotating outer cylinder was used to establish the velocity field in the test fluid. First, the thermal conductivity of distilled water measured to validate the instrument. The experimental water data agreed within 1% of literature values and there was no effect of outer cylinder rotation (shear field). However, for non-Newtonian fluids such as aqueous CMC and Separan solutions, there were significant increases in thermal conductivities of up to 70% for CMC and 50% for Separan depending on the shear rate, polymer concentration and temperature. Considering the shear rate dependent thermal conductivity in the study of heat transfer in non-Newtonian fluids could be important. As in natural convection, the momentum and energy equations could no longer be solved separately but would have to be solved simultaneously.

An Experimental Investigation on Combined Convective Heat Transfer of NonNewtonian Fluids (비뉴톤유체의 복합대류 열전달에 관한 실험적 연구)

  • 김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1770-1779
    • /
    • 1995
  • A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC ) were used; their behavior showed a reasonably good fit into the power-law model, .tau.=K.gamma.$^{n}$ . The test sections were made of copper with inside diameters of 3.23 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy ; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-newtonian effects, was suggested.

Laminar Heat and Fluid Flow Characteristic with a Modified Temperature-Dependent Viscosity Model in a Rectangular Duct

  • Sohn Chang-Hyun;Chang Jae-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.382-390
    • /
    • 2006
  • The present study proposes a modified temperature-dependent non-Newtonian viscosity model and investigates the flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effects of temperature dependent viscosity, buoyancy, and secondary flow caused by the second normal stress difference are considered. Calculated Nusselt numbers by the modified temperature-dependent viscosity model give good agreement with the experimental results. The heat transfer enhancement of viscoelastic fluid in a rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

EFFEECTS OF NON-NEWTONIAN FLUID MODEL ON HEMODYNAMICS IN CEREBRAL SACCULAR ANEURYSMS (낭상 뇌동맥류 혈류유동에서 비뉴우토니안 유체 모델의 영향)

  • Park, J.S.;Lee, S.W.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 2011
  • The importance of shear thinning non-Newtonian blood rheology on the hemodynamic characteristics of idealized cerebral saccular aneurysms were investigated by carrying out CFD simulations assuming two different non-Newtonian rheology models (Carreau and Ballyk models). To explore effects of vessel curvature, a straight and a curved vessel geometry were considered. The wall shear stress(WSS), relative residence time(RRT) and velocity distribution were compared at the different phases of cardiac cycle. As expected, blood entered the aneurysm at the distal neck and created large vortex in both aneurysms, but with higher momentum on the curved vessel. Hemodynamic characteristics such as WSS, and RRT exhibited only minor effects by choice of different rheological models although Ballyk model produced relatively higher effects. We conclude that the assumption of Newtonian fluid is reasonable for studies aimed at quantifying the hemodynamic characteristics, in particular, WSS-based parameters, considering the current accuracy level of medical image of cerebral aneurysm.

Numerical Simulation of Pulsatile Flows around Micro-Stenosis for Blood Analog Fluids (혈액모사유체의 미세협착 주변 맥동유동 시뮬레이션)

  • Song, Jae Min;Hong, Hyeonji;Ha, Yi Kyung;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.10-16
    • /
    • 2019
  • Considering the role of viscosity in the hemorheology, the characteristics of non-Newtonian fluid are important in the pulsatile blood flows. Stenosis, with an abnormal narrowing of the vessel, contributes to block blood flows to downstream tissue and lead to plaque rupture. Therefore, systematic analysis of blood flow around stenosed vessels is crucial. In this study, non-Newtonian behaviors of blood analog fluids around the micro-stenosis with 60 % severity in diameter of $500{\mu}m$ was examined by using CFX under the pulsatile flow conditions with the period of 10 s. Viscosity information of two non-Newtonian fluids were obtained by fitting the value of normal blood and highly viscous blood. As the Newtonian fluid, the water at room temperature was used. During the pulsatile phase, wall shear stress (WSS) is highly oscillated. In addition, high viscous solution gives rise to increases the variation in the WSS around the micro-stenosis. Highly oscillating WSS enhance increasing tendency of plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.

Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel

  • Hong, Joung-Sook;Cooper-White, Justin
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.269-280
    • /
    • 2009
  • The drop formation dynamics of a shear thinning, elastic, yield stress ($\tau_o$) fluid (Carbopol 980 (poly(acrylic acid)) dispersions) in silicone oil has been investigated in a flow-focusing microfluidic channel. The rheological character of each solution investigated varied from Netwonian-like through to highly non-Newtonian and was varied by changing the degree of neutralization along the poly (acrylic acid) backbone. We have observed that the drop size of these non-Newtonian fluids (regardless of the degree of neutralisation) showed bimodal behaviour. At first we observed increases in drop size with increasing viscosity ratio (viscosity ratio=viscosity of dispersed phase (DP)/viscosity of continuous phase (CP)) at low flowrates of the continuous phases, and thereafter, decreasing drop sizes as the flow rate of the CP increases past a critical value. Only at the onset of pinching and during the high extensional deformation during pinch-off of a drop are any differences in the non-Newtonian characteristics of these fluids, that is extents of shear thinning, elasticity and yield stress ($\tau_o$), apparent. Changes in these break-off dynamics resulted in the observed differences in the number and size distribution of secondary drops during pinch-off for both fluid classes, Newtonian-like and non-Newtonian fluids. In the case of the Newtonian-like drops, a secondary drop was generated by the onset of necking and breakup at both ends of the filament, akin to end-pinching behavior. This pinch-off behavior was observed to be unaffected by changes in viscosity ratio, over the range explored. Meanwhile, in the case of the non-Newtonian solutions, discrete differences in behaviour were observed, believed to be attributable to each of the non-Newtonian properties of shear thinning, elasticity and yield stress. The presence of a yield stress ($\tau_o$), when coupled with slow flow rates or low viscosities of the CP, reduced the drop size compared to the Newtonian-like Carbopol dispersions of much lower viscosity. The presence of shear thinning resulted in a rapid necking event post onset, a decrease in primary droplet size and, in some cases, an increase in the rate of drop production. The presence of elasticity during the extensional flow imposed by the necking event allowed for the extended maintenance of the filament, as observed previously for dilute solutions of linear polymers during drop break-up.