• Title/Summary/Keyword: Non-Linear Finite Element Analysis

Search Result 563, Processing Time 0.028 seconds

Studies on two bay and three storey infilled frame with different interface materials: Experimental and finite element studies

  • Muthukumar, S.;Satyanarayanan, K.S.;Senthil, K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.543-555
    • /
    • 2017
  • The non-linear behaviour of integral infilled frames (in which the infill and the frame are bonded together with help of various interface materials) is studied both experimentally and numerically. The experiments were carried out on one-sixth scale two-bay and three-storey reinforced concrete frames with and without infill against static cyclic loading. Three interface materials - cement mortar, cork and foam have been used in between the infill and the frame. The infill, interface and the frame are bonded together is called integral frame. The linear and non-linear behaviors of two dimensional bare frame and integral infilled frame have been studied numerically using the commercial finite element software SAP 2000. Linear finite element analysis has been carried out to quantify the effect of various interface materials on the infilled frames with various combinations of 21 cases and the results compared. The modified configuration that used all three interface materials offered better resistance above others. Therefore, the experiments were limited to this modified infilled frame case configuration, in addition to conventional (A1-integral infilled frame with cement mortar as interface) and bare frame (A0-No infill). The results have been compared with the numerical results done initially. It is found that stiffness of bare frame increased by infilling and the strength of modified frame increased by 20% compare to bare frame. The ductility ratio of modified infilled frame was 42% more than that of the conventional infilled frame. In general, the numerical result was found to be in good agreement with experimental results for initial crack load, ultimate load and deformed pattern of infill.

Experimental investigation for failure analysis of steel beams with web openings

  • Morkhade, Samadhan G.;Gupta, Laxmikant M.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.647-656
    • /
    • 2017
  • This paper presents an experimental study on the behaviour of steel beams with different types of web openings. Steel beams with web openings became progressively more accepted as a well-organized structural form in steel construction since their existence. Their complicated design and profiling method provides better flexibility in beam proportioning for strength, depth, size and location of holes. The objective of this study is to carry out the experiments on steel beams with different types of web openings and performed non-linear finite element (FE) analysis of the beams that were considered in the experimental study in order to determine their ultimate load capacity and failure modes for comparison. Ten full scale models of steel beam with web openings have been tested in the experimental investigation. The finite element method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify test results and to investigate the nonlinear behaviour of failure modes such as local buckling, lateral torsional buckling, web-post buckling, shear buckling and Vierendeel bending of beams.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Effects of Material Characteristics on the Dynamic Response of the Reinforced Concrete Slabs (재료 특성이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • The reinforced concrete slab is one of main structure members in the construction industry sector. However, most of researches regarding to RC slabs have been focused on two-dimensional Mindlin-type plate element on the basis of laminated plate theory since three-dimensional solid element has a lot of difficulties in finite element formulation and costs in CPU time. In reality, the RC slabs are subjected to dynamic loads like a heavy traffic vehicle load, and thus should insure the safety from the static load as well as dynamic load. Once we can estimate the dynamic behaviour of RC slabs exactly, it will be very helpful for design of it. In this study, the 20-node solid element has been used to analyze the dynamic characteristics of RC slabs with clamped edges. The elasto-visco plastic model for material non-linearity and the smeared crack model have been adopted in the finite element formulation. The applicability of the proposed finite element has been tested for dynamic behaviour of RC slabs with respect to characteristics of concrete materials in terms of cracking stress, crushing strain, fracture energy and Poisson's ratio. The effect on dynamic behaviour is dependent on not crushing strain but cracking stress, fracture energy and Poisson's ratio. In addition to this, it is shown the damping phenomenon of RC slabs has been identified from the numerical results by using Rayleigh damping.

Analysis of Weld-induced Deformation in Aluminum Plates (알루미늄 판의 용접변형해석)

  • Lee Joo-Sung;Hoi Nguyen Tan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.32-39
    • /
    • 2007
  • A three-dimensional finite element model has been developed to simulate the MIG P/S welding process of two aluminum plates. The finite element calculations are performed using ANSYS finite element code, which takes into account the thermal and mechanical non-linear material properties. The results of finite element analysis compared with those of experiment to show its validity in view of distortions. Parametric studies are carried out on the validated model to assess the effects of various factors on the final residual distortion. Large deformations, temperature dependent material properties are included in the model. Finally, the formulas of fitting curves of angular distortion transverse shrinkage, and longitudinal shrinkage have been proposed.

Meshless Finite Element Analysis of Three-Dimensional Problems Using Fuzzy Knowledge Processing

  • 이준성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 1998
  • This paper describes a meshless of element-free method based on fuzzy knowledge processing. To efficiently simulate complicated physical phenomena with dynmics and non-linear ploblem using computational mechanics, special method is required such as parallel processing or adaptive analysis techniques. However, the conventional finite element method is too complicated to be employed in the above cases. In order to reduce the above complexity of the conventional finite element analysis systms, the so called meshles finite elements as an input information have been stuided. Node is generated if its distance form existing node points is similar to the node spacing fuction at the point. The node spacing function is well controlled by the fuzzy knowledge processing Practical performances of the present system are demonstrated through several three-dimensional(3D) problems.

  • PDF

Combined bending and web crippling of aluminum SHS members

  • Zhou, Feng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.173-185
    • /
    • 2019
  • This paper presents experimental and numerical investigations of aluminum tubular members subjected to combined bending and web crippling. A series of tests was performed on square hollow sections (SHS) fabricated by extrusion using 6061-T6 heat-treated aluminum alloy. Different specimen lengths were tested to obtain the interaction relationship between moment and concentrated load. The non-linear finite element models were developed and verified against the experimental results obtained in this study and test data from existing literature for aluminum tubular sections subjected to pure bending, pure web crippling, and combined bending and web crippling. Geometric and material non-linearities were included in the finite element models. The finite element models closely predicted the strengths and failure modes of the tested specimens. Hence, the models were used for an extensive parametric study of cross-section geometries, and the web slenderness values ranged from 6.0 to 86.2. The combined bending and web crippling test results and strengths predicted from the finite element analysis were compared with the design strengths obtained using the current American Specification, Australian/New Zealand Standard and European Code for aluminum structures. The findings suggest that the current specifications are either quite conservative or unconservative for aluminum square hollow sections subjected to combined bending and web crippling. Hence, a bending and web crippling interaction equation for aluminum square hollow section specimens is proposed in this paper.

Geometrically nonlinear analysis of functionally graded porous beams

  • Akbas, Seref D.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R.;Manoj Kumar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.287-299
    • /
    • 2023
  • This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.