• 제목/요약/키워드: Non-Conforming

검색결과 76건 처리시간 0.023초

회계이익과 과세소득의 일치가 기업의 조세회피를 줄이는가?: 순응적 조세회피와 비순응적 조세회피에 관한 분석 (Does Book-Tax Conformity Reduce a Corporate Tax Avoidance?: Analysis of Conforming Tax Avoidance and Non-conforming Tax Avoidance)

  • 기은선;김효은
    • 아태비즈니스연구
    • /
    • 제13권1호
    • /
    • pp.231-245
    • /
    • 2022
  • Purpose - The purpose of this study is to examine the effect of book-tax conformity on conforming tax avoidance and non-conforming tax avoidance. Design/methodology/approach - This study uses financial data from 1996 to 2019 of 34 countries. We regress conforming or non-conforming tax avoidance on book-tax conformity. We use the book-tax conformity measure developed by Atwood et al. (2010), the non-conforming tax avoidance measure developed by Desai and Dharmapala (2006), and the conforming tax avoidance measure developed by Badertscher et al. (2019). Findings - First, book-tax conformity has a significant positive relationship with non-conforming tax avoidance. Second, book-tax conformity is not statistically related to conforming tax avoidance. Research implications or Originality - While prior research focuses on the effect of book-tax conformity on earnings quality, we examine on the effect on tax avoidance. Furthermore, this study is expected to provide important policy implications regarding the types of tax avoidance strategies that tax authorities should pay attention to. Our results imply that tax authorities in countries with high book-tax conformity should pay more attention to non-conforming tax avoidance than to conforming tax avoidance.

A direct modification method for strains due to non-conforming modes

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.325-340
    • /
    • 2001
  • This paper addresses an efficient modification method that eliminates the undesirable effects of strains due to various non-conforming modes so that the non-conforming element can pass the patch test unconditionally. The scheme is incorporated in the element formulation to establish new types of non-conforming hexahedral elements designated as NHx and NVHx for the regular element and variable node element, respectively. Non-conforming displacement modes are selectively added to the ordinary (conforming) element displacement assumptions to improve the bending behavior of the distorted solid element. To verify the validation of proposed direct modification method and the improvement of element behavior, several numerical tests are carried out. Test results show that the proposed method is effective and its applications to non-conforming solid elements guarantee for the element to pass the patch test.

Non-conforming modes for improvement of finite element performance

  • Choi, Chang-Koon;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.595-610
    • /
    • 2002
  • This paper presents an efficiency of various non-conforming (NC) modes in development of a series of new finite elements with the special emphasis on 4-node quadrilateral elements. The NC modes have been used as a key scheme to improve the behaviors of various types of new finite elements, i.e., Mindlin plate bending elements, membrane elements with drilling degrees of freedom, flat shell elements. The NC modes are classified into three groups according to the 'correction constants' of 'Direct Modification Method'. The first group is 'basic NC modes', which have been widely used by a number of researchers in the finite element communities. The basic NC modes are effective to improve the behaviors of regular shaped elements. The second group is 'hierarchical NC modes' which improve the behaviors of distorted elements effectively. The last group is 'higher order NC modes' which improve the behaviors of plate-bending elements. When the basic NC modes are combined with hierarchical or higher order NC modes, the elements become insensitive to mesh distortions. When the membrane component of a flat shell has 'hierarchical NC modes', the membrane locking can be suppressed. A number of numerical tests are carried out to show the positive effect of aforementioned various NC modes incorporated into various types of finite elements.

Static assessment of quadratic hybrid plane stress element using non-conforming displacement modes and modified shape functions

  • Chun, Kyoung-Sik;Kassegne, Samuel Kinde;Park, Won-Tae
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.643-658
    • /
    • 2008
  • In this paper, we present a quadratic element model based on non-conforming displacement modes and modified shape functions. This new and refined 8-node hybrid stress plane element consists of two additional non-conforming modes that are added to the translational degree of freedom to improve the behavior of a membrane component. Further, the modification of the shape functions through quadratic polynomials in x-y coordinates enables retaining reasonable accuracy even when the element becomes considerably distorted. To establish its accuracy and efficiency, the element is compared with existing elements and - over a wide range of mesh distortions - it is demonstrated to be exceptionally accurate in predicting displacements and stresses.

Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Nam-Ho
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.569-586
    • /
    • 1996
  • A new three-dimensional 8-node solid element with rotational degrees of freedom is presented. The proposed element is established by adding rotational degrees of freedom to the basic 8-node solid element. Thus the element has three translations and three rotational degrees of freedom per node. The corner rotations are introduced by transforming the hierarchical mid-edge displacements which are parabolic shape along an edge. The derivation of the element is based on the mixed variational principles in which the rotations are introduced as independent variables. Several types of non-conforming modes are selectively added to the displacement fields to obtain a series of improved elements. The resulting elements do not have the spurious zero energy modes and Poisson's ratio locking and pass patch test. Numerical examples show that presented non-conforming solid elements with rotational degrees of freedom show good performance even in the highly distorted meshes.

경제성을 고려한 공정 목표값 최적화 (An Economic Optimization of the Target Value)

  • 윤철환;유정현;윤덕균
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.201-213
    • /
    • 1998
  • We address the problem of choosing the most economic mean value for an automatic filling operation on a production line through the sampling inspection. If quality characteristic of a unit is less than inspection specification then the goods is not accepted. Otherwise, it is accepted. The lots that the numbers of non-conforming units in a sample are larger than the allowable number of non-conforming units are rejected. The non-conforming units in the rejected lots are separated by the screening inspection. The non-conforming units separated are sold in discount price. We assume that quality characteristic is larger-the-better characteristic, the distribution of quality characteristic is normal distribution, and the standard deviation of the distribution is known. This paper presents total expected profit function model considering sales revenue, inspection costs, and material costs. The manufacturing process mean value maximizing total expected profit is determined, and the results of the process target value and total expected profit is analyzed as coefficients change.

  • PDF

부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경 (Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique)

  • 이준호;정의일;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

FINITE ELEMENT METHOD - AN EFFECTIVE TOOL FOR ANALYSIS OF SHELL

  • Park, Chang-Koon;Lee, Tae-Yeol
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.3-17
    • /
    • 2003
  • This paper deals with the problems and their possible solutions in the development of finite element for analysis of shell. Based on these solution schemes, a series of flat shell elements are established which show no signs of membrane locking and other defects even though the coarse meshes are used. In the element formulation, non-conforming displacement modes are extensively used for improvement of element behaviors. A number of numerical tests are performed to prove the validity of the solutions to the problems involved in establishing a series of high performance flat shell elements. The test results reveal among others that the high accuracy and fast convergence characteristics of the elements are obtainable by the use of various non-conforming modes and that the ‘Direct Modification Method’ is a very useful tool for non-conforming elements to pass the patch tests. Furthermore, hierarchical and higher order non-conforming modes are proved to be very efficient not only to make an element insensitive to the mesh distortion but also to remove the membrane locking. Some numerical examples are solved to demonstrate the validity and applicability of the presented elements to practical engineering shell problems.

  • PDF

Variable-node non-conforming membrane elements

  • Choi, Chang-Koon;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.479-492
    • /
    • 2003
  • Non-conforming membrane elements which have variable number of mid-side nodes with drilling degrees of freedom and which is designated as NMDx have been presented in this paper. The non-conforming elements with variable number of mid-side nodes can be efficiently used in the local mesh refinement for the in-plane structures. To guarantee the developed elements always pass the patch test, the direct modification method is incorporated into the element formulation. Detailed numerical tests in this study show the validity of the variable node NC elements developed in this study and a wide applicability of these elements to practical problems.

면내회전자유도를 가지는 4절점 비적합 평면쉘의 개발 (A 4-Node Non-conforming Flat Shell Element with Drilling DOF)

  • 최창근;이필승
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.27-34
    • /
    • 1998
  • A versatile flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. This element is formulated by the enhanced displacement field with the additional non-conforming displacement modes. Thus the element possesses six degrees-of-freedom (DOF) per node which permits an easy connection to other six DOF elements as well as the improvement of the element behavior. In plate bending part, this element is established by the combined use of the addition of non-conforming modes, the reduced (or selective) integration scheme, and the construction of the substitute shear strain fields. The achieved improvement may be attributable to the fact that the merits of these individual techniques are merged into the new element in a complementary manner. In membrane part, this element shows better membrane behavior as the nonconforming displacement mode is added to drilling mode.

  • PDF