• Title/Summary/Keyword: Non- propagation Crack

Search Result 117, Processing Time 0.025 seconds

A Study on the Fatigue Crack Propagation Behavior by the Variation of Heat Treatment Temperature and Thickness in Mild Steel (연강의 열처리 온도와 두께 변화에 따른 피로균열성장거동에 관한 연구)

  • 오환교
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.40-44
    • /
    • 2000
  • The fatigue and tensile test were carried out with Mild steel using the Dump Frame of commercial car. The specimens were heat-treated at $810^{\circ}C$ and $930^{\circ}C$ and worked 4.5, 6.0, 8.0mm thickness in order to look over the mechanical properties and fatigue life by heat treatment and thickness from the tensile test result, the yield strength of the heat treated specimens was increased about 35% more than that of the non-heat treated specimen. The fatigue life of non-heated specimen was decreased 15% but that of heat treated specimens at $870^{\circ}C$ and $930^{\circ}C$ were decreased 16.38% and 13.16% respectably according to increasing the thickness from 4.5 to 8.0mm.

  • PDF

Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR

  • Moallemi, S.;Pietruszczak, S.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete structures suffering from alkali-silica reaction has been developed and implemented. The formulation of the problem prior to the onset of localized deformation is based on a chemo-elasticity approach. The localized deformation mode, involving the formation of macrocracks, is described using a simplified form of the strong discontinuity approach (SDA) that employs a volume averaging technique enhanced by a numerical procedure for tracing the propagation path in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is illustrated by a number of numerical examples that examine the crack propagation pattern in both plain and reinforced concrete under different loading scenarios.

Behavior of Initiation and Propagation of Fatigue Crack under Periodic Overstressing (In the case of Fatigue Limit Stresses) (과대, 과소 응력하에서의 피로크랙 발생거동 (피로한도 응력을 중심으로))

  • 송남홍;원시태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1839-1851
    • /
    • 1991
  • Fatigue crack behavior is studied through the two-level rotary bending test with the deep non-through radial holed notch specimens of low carbon steels(SM22C). The main factors investigated are the effects of the damage zone size around crack tip and phenomena of closing or opening of the crack tip. Obtained results are summarized as follows. Fatigue crack behavior in second level stressing slightly lower than fatigue limit is closely related to the size of damage zone produced by the first level stress higher than fatigue limit and to the phenomena of crack closing and opening for the second level stress. The non-propagating crack limit condition depends upon the crack length l$_{1}$ propagated under the first level stress and the magnitude of second level stress .sigma.$_{2}$ lower than the fatigue limit. The non-propagating crack limit condition is expressed by following eq. $\sigma_2^{6.1}{\times}l_{1}=7.35{\times}10^{6}[(kg_{f}mm^{6.1}(mm)]$

Behaviour of edge crack propagation under non-symmetric contact tractions (비대칭 접촉하중에 의한 표면균열 전파거동)

  • Kim, Hyung-Kyu;Kang, Heung-Seok;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.144-150
    • /
    • 2001
  • Considered is non-symmetric contact traction induced by the tilting of a contact body and/or by a far field bulk tensile load to the other body. The problem is under the regime of plane strain. General profile of the contact end is incorporated and partial slip condition is supposed. As an example contact configuration, an indentation of a punch with rounded corners onto a half plane is studied. The variation of the internal stress field due to the tilting and the bulk tension is investigated. An edge crack problem is analyzed to examine the influence of the non-symmetric traction. It is shown that the tilting of a punch does not influence the behaviour of the crack. Rather, the effect of the bulk tension on the cracking behaviour is found considerable.

  • PDF

Propagation Behavior of Inclined Surface Crack of Semi-Infinite Elastic Body under Hertzian Contact (반무한 탄성체의 헤르츠 접촉하의 경사진 표면균열의 전파거동)

  • 김재호;김석삼;박중한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.624-635
    • /
    • 1990
  • Analytical study based on linear fracture mechanics was conducted on propagation behavior of inclined surface crack in semi-infinite elastic body. The analytical model was assumed to be inclined surface crack under plane strain condition upon which Hertzian stress was superimposed. Supposing continuous distribution of dislocation and applying Erdogan-Gupta's method to this crack problem, the stress intensity factors $K_{I}$ and $K_{II}$) at the crack-tip were obtained for various Hertzian contact positions. Analytic results have shown that driving force for crack growth is $K_{I}$ for non-lubricated condition and $K_{II}$ for fluid and boundary lubricated condition. The coefficient of friction at the hertzian contact and crack surfaces plays an important role in predicting the direction of crack propagation. It is also found that the maximum effective stress intensity factor exists at cracks of a certain specific length depending on lubricated condition.ion.n.

Improvement of Fatigue Strength by Spot Heating for Out-of-plane Gusset (국부가열을 이용한 면외거셋의 피로강도 향상)

  • Jung, Young-Hwa;Nam, Wang-Hyone;Chang, Dong-Huy
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.213-222
    • /
    • 2001
  • In the study, the fatigue strength improvement and mechanism have been estimated by the Spot-Heating treatment on welded bead toes. For this, web-gusset specimens were made without residual stresses and the others with residual stresses imposed by Spot-Heating. The 4-point bending tests were performed in order to estimate the effect of spot-heating on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue test, fatigue strength of As-Welded specimen for non load-carrying fillet welded joints subjected to pure bending has satisfied the grade of fatigue prescribed in specifications of korea, AASHTO and JSSC. As compare with As-Welded specimen and Spot-Heating specimen have increased about 20% for the fatigue strength at $7.7{\times}10^6$ cycles. The Spot-Heating by reformation of the residual stress on welded bead toes has greatly affected the fatigue crack propagation life, but has slightly affected the fatigue crack initiation life.

  • PDF

Structural Design Optimization of Dynamic Crack Propagation Problems Using Peridynamics (페리다이나믹스를 이용한 균열진전 문제의 구조 최적설계)

  • Kim, Jae-Hyun;Park, Soomin;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Based on a bond-based peridynamics theory for dynamic crack propagation problems, this paper presents a design sensitivity analysis and optimization method. Peridynamics has a peculiar advantage over the existing continuum theory in the mathematical modelling of problems where discontinuities arise. For the design optimization of the crack propagation problems, a non-shape design sensitivity is derived using the adjoint variable method. The obtained adjoint sensitivity of displacement and strain energy turns out to be very accurate and efficient compared to the finite different sensitivity. The obtained design sensitivities are futher utilized to optimally control the position of bifurcation point in the design optimization of crack propagation in a plate under tension. A numerical experiment demonstrates that the optimal distribution of material density could delay the position of bifurcation.

Comparison of linear and non-linear earthquake response of masonry walls

  • Sayin, Erkut;Calayir, Yusuf
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.17-35
    • /
    • 2015
  • In this study, linear and non-linear response of a masonry wall that includes an opening was presented. The masonry wall was modeled with two-dimensional finite elements. Smeared crack model that includes the strain softening behavior was selected to the masonry wall material. For the numerical application, linear and non-linear analyses of the masonry wall were carried out using east-west and vertical components of the 1992 Erzincan and 2003 $Bing{\ddot{o}}l$ earthquake acceleration records. Linear and non-linear solutions were compared each other. The displacement and stress results at the selected points of the masonry wall and crack propagation in the masonry wall were presented for both earthquake acceleration records.

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

A Study on Mixed Mode Crack Initiation under Static Loading Condition

  • Koo, Jea-Mean
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, several different fracture criteria using the Eftis and Subramanian's stress solutions [1] are compared with the printed experimental results under different loading conditions. The analytical results of using the solution with non-singular term show better than without non-singular in comparison with the experimental data. And maximum tangential stress criterion (MTS) and maximum tangential strain energy density criterion (MTSE) can get useful results for several loading conditions.