• Title/Summary/Keyword: Non ohmic region

Search Result 4, Processing Time 0.018 seconds

The Effect of Sb2O3 Additive on the Electrical Properties of ZnO Varistor (Sb2O3 첨가제가 ZnO 배리스터의 전기적 특성에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1697-1701
    • /
    • 2016
  • The leakage conduction and critical voltage characteristic of ZnO ceramic were investigated as a function of $Sb_2O_3$ concentration. Leakage conduction in the ohmic region increased with increasing $Sb_2O_3$ concentration and was attributed to the potential barrier height. The nonlinear coefficient increased with an increasing amount of $Sb_2O_3$. It was found that increases in the apparent critical voltages were associated with the lowered donor concentration in the grain boundary of between two ZnO grains. And the decrease of donor concentration on doping with $Sb_2O_3$ additive was attributed to the lowered capacitance in the grain boundary layer.

Electrical Conduction and Resistance Characteristics of Styrene Butadiene Rubber (SBR) Composites Containing Carbon Black (Styrene Butadiene Rubber (SBR)/ Carbon Black 복합체의 전기저항 및 전기전도 특성)

  • Kim, Do-Hyun;Lee, Jung-Hee;Sohn, Ho-Soung;Lee, Kyung-Won
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.246-254
    • /
    • 1998
  • In order to investigate the characteristics of resistance and conduction of vulcanized styrene butadiene rubber (SBR)/ carbon black (CB) composites, surface/ volume resistivity, point to point resistance, decay time, and electrical conduction experiments with four different kinds of non-conductive carbon black were measured. When about 50phr of carbon black were loaded in SBR, all resistivites suddenly decreased and critical region (Rc) was shown. Current densities of SBR/CB composites showed critical point (Pc) and increased with the electric fields. Electrical conduction mechanisms of SBR/CB composites could be considered as the ohmic conduction at low electric fields and the space charge limited conduction (SCLC) at high electric fields, respectively.

  • PDF

Neutralization and Ionization of movable ion at insulator-metal interface (절연체-금속계면에서 가동이온의 중성화와 이온화)

  • 이성길;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.33-35
    • /
    • 1988
  • From the study of mechanism of electrical conduction of film which is made from Polyethylene Terephthalate at very high temperature which is larger than low electric field and glass transition point, we find that there is a extraordinary non ohmic region (I∝V$^n$, 0

  • PDF

Prevention of Power Overshoot and Reduction of Cathodic Overpotential by Increasing Cathode Flow Rate in Microbial Fuel Cells used Stainless Steel Scrubber Electrode (스테인리스강 수세미 전극을 사용한 미생물연료전지의 전력 오버슈트 예방과 환원조 유속 증가에 의한 환원전극 과전압 감소)

  • Kim, Taeyoung;Kang, Sukwon;Chang, In Seop;Kim, Hyun Woo;Sung, Je Hoon;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.591-598
    • /
    • 2017
  • Power overshoot phenomenon was observed in microbial fuel cells (MFCs) used non-catalyzed graphite felt as cathode. Voltage loss in MFCs was mainly caused by cathode potential loss. Cheap stainless steel scrubber, which has high conductivity, and Pt/C coated graphite felt as cathode were used for overcoming power overshoot and reducing the cathode potential loss in MFCs. The MFCs used stainless steel scrubber showed no power overshoot even slow catholyte flow rate and produced 29% enhanced maximum current density ($23.9A/m^3$) than MFCs used non-catalyzed graphite felt while the power overshoot phenomenon was existed in Pt/C coated MFCs. Increasing catholyte flow rate resulted in disappearing power overshoot of MFCs used non-catalyzed graphite felt. In addition, maximum power density and current density of both MFCs used non-catalyzed graphite felt and stainless steel scrubber increased by 2-3.5 times. Cathode potential losses in all region of activation loss, ohmic loss, and mass transport loss were reduced according to increase of catholyte flow rate. Therefore, stainless steel scrubber has advantages that are economical materials as electrode and prevents power overshoot, leading to enhance electricity generation. In addition, increasing catholyte flux is one of great solution when power overshoot caused by cathodic overpotential is observed in MFCs.