• 제목/요약/키워드: Noisy optimization

검색결과 49건 처리시간 0.025초

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

가보 펄스 기반 정합추적 알고리즘 : 웨이브가이드 결함진단에서의 응용 (Gabor Pulse-Based Matching Pursuit Algorithm : Applications in Waveguide Damage Detection)

  • 선경호;홍진철;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.969-974
    • /
    • 2004
  • Although guided-waves are very efficient for long-range nondestructive damage inspection, it is not easy to extract meaningful pulses of small magnitude out of noisy signals. The ultimate goal of this research is to develop an efficient signal processing technique for the current guided-wave technology. The specific contribution of this investigation towards achieving this goal, a two-stage Gabor pulse-based matching pursuit algorithm is proposed : rough approximations with a set for predetermined parameters characterizing the Gabor pulse and fine adjustments of the parameters by optimization. The parameters estimated from the measured signal are then used to assess not only the location but also the size of a crack existing in a rod. To validate the effectiveness of the proposed method, the longitudinal wave-based damage detection in rods is considered. To estimate the crack size, Love's theory for the dispersion of longitudinal waves is employed.

  • PDF

Greedy Learning of Sparse Eigenfaces for Face Recognition and Tracking

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.162-170
    • /
    • 2014
  • Appearance-based subspace models such as eigenfaces have been widely recognized as one of the most successful approaches to face recognition and tracking. The success of eigenfaces mainly has its origins in the benefits offered by principal component analysis (PCA), the representational power of the underlying generative process for high-dimensional noisy facial image data. The sparse extension of PCA (SPCA) has recently received significant attention in the research community. SPCA functions by imposing sparseness constraints on the eigenvectors, a technique that has been shown to yield more robust solutions in many applications. However, when SPCA is applied to facial images, the time and space complexity of PCA learning becomes a critical issue (e.g., real-time tracking). In this paper, we propose a very fast and scalable greedy forward selection algorithm for SPCA. Unlike a recent semidefinite program-relaxation method that suffers from complex optimization, our approach can process several thousands of data dimensions in reasonable time with little accuracy loss. The effectiveness of our proposed method was demonstrated on real-world face recognition and tracking datasets.

Speech Enhancement Based on Psychoacoustic Model

  • Lee, Jingeol;Kim, Soowon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권3E호
    • /
    • pp.12-18
    • /
    • 2000
  • Psychoacoustic model based methods have recently been introduced in order to enhance speech signals corrupted by ambient noise. In particular, the perceptual filter is analytically derived where the frequency content of the input noisy signal is made the same as that of the estimated clean signal in auditory domain. However, the analytical derivation should rely on the deconvolution associated with the spreading function in the psychoacoustic model, which results in an ill-conditioned problem. In order to cope with the problem associated with the deconvolution, we propose a novel psychoacoustic model based speech enhancement filter whose principle is the same as the perceptual filter, however the filter is derived by a constrained optimization which provides solutions to the ill-conditioned problem. It is demonstrated with artificially generated signals that the proposed filter operates according to the principle. It is shown that superior performance results from the proposed filter over the perceptual filter provided that a clean speech signal is separable from noise.

  • PDF

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • 한국의학물리학회지:의학물리
    • /
    • 제29권4호
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

유사 이미지 분류를 위한 딥 러닝 성능 향상 기법 연구 (Research on Deep Learning Performance Improvement for Similar Image Classification)

  • 임동진;김태홍
    • 한국콘텐츠학회논문지
    • /
    • 제21권8호
    • /
    • pp.1-9
    • /
    • 2021
  • 딥 러닝을 활용한 컴퓨터 비전 연구는 여전히 대규모의 학습 데이터와 컴퓨팅 파워가 필수적이며, 최적의 네트워크 구조를 도출하기 위해 많은 시행착오가 수반된다. 본 연구에서는 네트워크 최적화나 데이터를 보강하는 것과 무관하게 데이터 자체의 특성만을 고려한 CR(Confusion Rate)기반의 유사 이미지 분류 성능 향상 기법을 제안한다. 제안 방법은 유사한 이미지 데이터를 정확히 분류하기 위해 CR을 산출하고 이를 손실 함수의 가중치에 반영함으로서 딥 러닝 모델의 성능을 향상시키는 기법을 제안한다. 제안 방법은 네트워크 최적화 결과와 독립적으로 이미지 분류 성능의 향상을 가져올 수 있으며, 클래스 간의 유사성을 고려해 유사도가 높은 이미지 식별에 적합하다. 제안 방법의 평가결과 HanDB에서는 0.22%, Animal-10N에서는 3.38%의 성능향상을 보였다. 제안한 방법은 다양한 Noisy Labeled 데이터를 활용한 인공지능 연구에 기반이 될 것을 기대한다.

Pavement condition assessment through jointly estimated road roughness and vehicle parameters

  • Shereena, O.A.;Rao, B.N.
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.317-346
    • /
    • 2019
  • Performance assessment of pavements proves useful, in terms of handling the ride quality, controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of pavement requires the identification of pavement roughness along with vehicle parameters. The present study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer Euler-Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model considered in this study is a half car model, fitted with accelerometers at specified points. The identification of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator (MVE) make use of a linear state-space formulation including roughness, to overcome the linearization difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the optimization scheme to yield estimates of vehicle parameters. The issue of ill-posedness of the problem is dealt with by introducing a regularization equivalent term in the objective function, specifically where a large number of parameters are to be estimated. Effect of different objective functions is also studied. The outcome of this research is an overall measure of pavement condition.

두부 CT 선량감소를 위한 총변량 최적화의 적용 (Application of Total Variation Optimization for Reduction of Head CT Dose)

  • 최석윤
    • 한국방사선학회논문지
    • /
    • 제12권6호
    • /
    • pp.707-712
    • /
    • 2018
  • CT의 검사 건수는 크게 증가하고 있으며, 이에 따른 방사선 피폭도 늘어나고 있는 실정이다. 반복된 두부 CT검사는 수정체 및 갑상선에 영향을 줄 수 있다. 대부분의 병원에서는 두부 CT검사로 영상 정보 증가와 영상 질 향상에 대한 관심에 비해 주요장기 방사선 피폭에 대한 관심은 부족한 경향이 있다. 사용 프로토콜은 병원마다 다른 경향이 있고 업무과중으로 피폭선량을 고려할만한 여건은 부족한 편이다. 피폭감소를 고려한 저관전압 CT를 사용할 경우 임펄스 잡음이 발생한다. 본 연구에서는 잡음이 발생한 CT 영상에 대해 제안한 방법을 적용하여 화질 개선 정도를 분석하였다. 제안하는 영상개선 방법은 임펄스잡음후보 화소에 대해서만 총변량 최적화 방법을 적용하였다. 실험결과 에지 정보가 잘 보존되는 특징이 있었고 임펄스 잡음을 효과적으로 제거 할 수 있었다. 관전압과 회전시간에 따라 획득된 영상들에 대해서 매우 잘 작동하였다. 본 연구에서 제안하는 방법을 적용한다면 화질 걱정 없이 검사 프로토콜을 피폭 최저조건으로 설정하여 사용할 수 있고 CT에 적용시 도움이 될 것으로 판단한다.

보간과 회귀를 위한 일반크리깅 모델 (Generalized Kriging Model for Interpolation and Regression)

  • 정재준;이태희
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.277-283
    • /
    • 2005
  • Kriging model is widely used as design analysis and computer experiment (DACE) model in the field of engineering design to accomplish computationally feasible design optimization. In general, kriging model has been applied to many engineering applications as an interpolation model because it is usually constructed from deterministic simulation responses. However, when the responses include not only global nonlinearity but also numerical error, it is not suitable to use Kriging model that can distort global behavior. In this research, generalized kriging model that can represent both interpolation and regression is proposed. The performances of generalized kriging model are compared with those of interpolating kriging model for numerical function with error of normal distribution type and trigonometric function type. As an application of the proposed approach, the response of a simple dynamic model with numerical integration error is predicted based on sampling data. It is verified that the generalized kriging model can predict a noisy response without distortion of its global behavior. In addition, the influences of maximum likelihood estimation to prediction performance are discussed for the dynamic model.

A new learning algorithm for incomplete data sets and multi-layer neural networks

  • Bitou, Keiichi;Yuan, Yan;Aoyama, Tomoo;Nagashima, Umpei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.150-155
    • /
    • 2003
  • We discussed a quantitative structure-activity relationships (QSAR) technique on incomplete data set. We proposed a new solver that used 2 kinds of multi-layer neural networks. One is to compensate the defect data, and another is to evaluate the QSAR. The solver can predict the defects in model QSAR data. By using them, we get very high precision QSAR. It is 5-10 times higher than that of a traditional method. However, in case of anti-cancer Carboquone, the prediction is not so complete. It was about O(3) wrong than the model calculation. The predicted values would have rather large error. It is caused by noisy observations of Carboquone. However, if we used the uncertain predictions, new data are included in QSAR. If not, they were omitted. The effect would not be little. Therefore, we evaluated the QSAR. The results are contrary to the expectation, are not so wrong. We believe that the wrong effect is suppressed by including information of new data.

  • PDF