• 제목/요약/키워드: Noisy environment

검색결과 390건 처리시간 0.02초

PR-QMF Wavelet Transform을 이용한 천이 수중 신호의 특징벡타 추출 기법 (Feature Vector Extraction Method for Transient Sonar Signals Using PR-QMF Wavelet Transform)

  • 정용민;최종호;조용수;오원천
    • 한국음향학회지
    • /
    • 제15권1호
    • /
    • pp.87-92
    • /
    • 1996
  • 수중에서 발생하는 천이 신호는 강한 비정재성을 갖고 다양한 천이 신호원이 함께 존재하기 때문에 분석 및 식별에 어려움이 있다. 본 논문에서는 디지털 신호처리 기법을 천이 신호의 분석에 적용하여 특징벡타를 추출하는 기법에 대하여 논하고 기존의 고전적인 방법보다 더 좋은 인식률을 얻을 수 있는 wavelet 변환을 이용한 특징벡타 추출 방법을 제안한다. 모의실험을 통하여 제안된 방법이 고전적이 방법보다 더 적은 특징 벡타 수로도 좋은 성능을 보임을 확인한다. 특히, Daubechies 계수를 필터계수로 하는 PR-QMF wavelet 변환을 이용한 특징벡타 추출 방법은 구현방법이 용이하고 잡음 환경 하에서도 우수한 성능을 보인다.

  • PDF

HMM(Hidden Markov Model) 기반의 견고한 실시간 립리딩을 위한 효율적인 VLSI 구조 설계 및 FPGA 구현을 이용한 검증 (Design of an Efficient VLSI Architecture and Verification using FPGA-implementation for HMM(Hidden Markov Model)-based Robust and Real-time Lip Reading)

  • 이지근;김명훈;이상설;정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.159-167
    • /
    • 2006
  • 립리딩은 잡음이 있는 환경에서 음성 인식 시스템의 성능 향상을 위한 한 방법으로 제안되었다. 기존의 논문들이 소프트웨어 립리딩 방법을 제안하는 것에 반하여, 본 논문에서는 실시간 립리딩을 위한 하드웨어 설계를 제안한다. 실시간 처리와 구현의 용이성을 위하여 본 논문에서는 립리딩 시스템을 이미지 획득 모듈, 특징 벡터 추출 모듈, 인식 모듈의 세 모듈로 분할하였다. 이미지 획득 모듈에서는 CMOS 이미지 센서를 사용하여 입력 영상을 획득하게 하였고, 특징 벡터 추출 모듈에서는 병렬 블록매칭 알고리즘을 이용하여 입력영상으로부터 특징벡터를 추출하도록 하였고, 이를 FPGA로 코딩하여 시뮬레이션 하였다. 인식 모듈에서는 추출된 특징 벡터에 대하여 HMM 기반 인식 알고리즘을 적용하여 발성한 단어를 인식하도록 하였고, 이를 DSP에 코딩하여 시뮬레이션 하였다. 시뮬레이션 결과 실시간 립리딩 시스템이 하드웨어로 구현 가능함을 알 수 있었다.

  • PDF

KEMAR 마네킹을 이용한 단이 보청기용 FDSI 빔포밍 알고리즘의 정량적 평가 (Quantitative Evaluation of the Performance of Monaural FDSI Beamforming Algorithm using a KEMAR Mannequin)

  • 조경원;남경원;한종희;이상민;김동욱;홍성화;장동표;김인영
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권1호
    • /
    • pp.24-33
    • /
    • 2013
  • To enhance the speech perception of hearing aid users in noisy environment, most hearing aid devices adopt various beamforming algorithms such as the first-order differential microphone (DM1) and the two-stage directional microphone (DM2) algorithms that maintain sounds from the direction of the interlocutor and reduce the ambient sounds from the other directions. However, these conventional algorithms represent poor directionality ability in low frequency area. Therefore, to enhance the speech perception of hearing aid uses in low frequency range, our group had suggested a fractional delay subtraction and integration (FDSI) algorithm and estimated its theoretical performance using computer simulation in previous article. In this study, we performed a KEMAR test in non-reverberant room that compares the performance of DM1, DM2, broadband beamforming (BBF), and proposed FDSI algorithms using several objective indices such as a signal-to-noise ratio (SNR) improvement, a segmental SNR (seg-SNR) improvement, a perceptual evaluation of speech quality (PESQ), and an Itakura-Saito measure (IS). Experimental results showed that the performance of the FDSI algorithm was -3.26-7.16 dB in SNR improvement, -1.94-5.41 dB in segSNR improvement, 1.49-2.79 in PESQ, and 0.79-3.59 in IS, which demonstrated that the FDSI algorithm showed the highest improvement of SNR and segSNR, and the lowest IS. We believe that the proposed FDSI algorithm has a potential as a beamformer for digital hearing aid devices.

자기피드백 마스킹 기법을 사용한 카오스 음성비화통신 (Chaotic Speech Secure Communication Using Self-feedback Masking Techniques)

  • 이익수;여지환
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.698-703
    • /
    • 2003
  • 본 논문에서는 카오스 신호를 이용하여 음성신호의 보안전송을 위한 아날로그 비화통신 시스템을 제안하고 통신성능을 분석하였다. 기존의 카오스 동기화 및 카오스 변조통신 알고리즘을 개선하여 통신환경에서 발생하는 다양한 조건들을 적용하여 음성신호의 복원능력을 모의실험 하였다. 일반적인 PC(Pecora & Carroll) 제어기법과 제안한 SFB(Self-FeedBack) 마스킹 기법을 사용하여 송신단에서 음성신호를 카오스 신호로 마스킹하여 변조하고, 통신채널에 잡음신호를 추가하여 전송하였다. 수신단에서는 카오스 응답시스템을 이용하여 음성신호를 복조하고, 복원성능을 계산하기 위하여 아날로그 복원 에러 신호의 평균전력을 제안하여 계산하였다. 실험결과 마스킹 정도, 파라미터들의 민감성, 채널잡음 등에 대하여 PC 제어기법보다 피드백 제어기법의 복원성능이 우수함을 정량적인 데이터로 확인할 수 있었다. 또한 로렌쯔 카오스 비화통신시스템에 사용할 경우 파라미터들의 조합으로 암호키를 구성해야 하므로 파라미터 변화율에 대응하는 복원에러율의 관계를 모의실험 값으로 구하였다.

전역 음성 부재 확률 기반의 향상된 최소값 제어 재귀평균기법을 이용한 음성 향상 기법 (Speech Enhancement Based on Improved Minima Controlled Recursive Averaging Incorporating GSAP)

  • 송지현;방동혁;이상민
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.104-111
    • /
    • 2012
  • 본 논문에서는 향상된 최소값 제어 재귀 평균 기법 (improved minima controlled recursive averaging, IMCRA) 알고리즘의 잡음 전력 추정성능을 향상 시키기 위한 알고리즘을 제안한다. 기존의 IMCRA은 주파수 특성이 빠르게 변화하는 비정상적인 환경과 낮은 SNR을 갖는 상황에서 잡음 전력 추정에 직접적으로 영향을 미치는 음성 검출기의 성능이 강인하지 못한 단점이 있다. 본 연구에서는 강인한 음성 검출 성능을 위해서 기존 IMCRA의 음성 검출기에 전역 음성 부재 확률을 적용한 음성 향상 기법을 제안한다. 제안된 알고리즘의 성능 평가는 음성의 perceptual evaluation of speech quality (PESQ)와 composite measure를 통한 음질을 평가하였다. 실험 결과 다양한 잡음 환경 (car, white, babble)에서 전역 음성 부재 확률을 적용한 IMCRA의 음성 향상 기법이 향상된 결과를 보여주었다. 특히, 비정상잡음 환경인 babble 5dB에서 PESQ 0.026, composite measure 0.029의 향상된 음질을 나타내었다.

우리나라 저체중아 출생의 공간적 변동성 지도화: 베이지언적 접근 (Mapping the Geographic Variations of the Low Birth Weight cases in South Korea: Bayesian Approaches)

  • 노영희;박기호
    • 대한지리학회지
    • /
    • 제51권3호
    • /
    • pp.367-380
    • /
    • 2016
  • 본 연구에서는 우리나라에서 발생한 저체중아 출생 집계 자료를 공간적으로 지도화하기 위한 기법들을 검토 비교하고, 이를 기반으로 우리나라의 LBW 지도를 작성하였다. 표준화사망률이나 조사망률 등은 역학 분야에서 지속적으로 광범위하게 사용되고 있는 지표이다. 그러나 이러한 표준화사망률은 집계 단위의 샘플 수에 영향을 많이 받는다는 단점을 가지고 있다. 이에, 본 연구에서는 베이지언 기법을 활용하여 샘플 수에 따른 통계적 변동성을 감소시키고자 하였다. 이를 위해 경험적 베이지언 기법과 풀 베이지언 기법을 모두 활용하였고, 결과적으로 유사한 통계량을 산출한 것을 확인할 수 있었다. 반면, SMR 기반의 통계량은 높은 분산을 가지고 있음을 확인하였다. 연구의 결과에 따른 통계 지도는 우리나라 저체중아 출생의 높은 위험도를 가지는 지역들을 파악할 수 있도록 한다.

  • PDF

중요한 이벤트만을 검색함으로써 분류기의 최적 성능을 찾는 방법 (A method of searching the optimum performance of a classifier by testing only the significant events)

  • 김동희;이원돈
    • 한국정보통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1275-1282
    • /
    • 2014
  • 유비쿼터스 환경에서는 수많은 정보들이 존재한다. 하지만 이 정보들은 너무 광범위하기 때문에 이로부터 필요에 따라 적절하게 사용 할 수 있는 정보를 얻기란 쉽지가 않다. 이로 인해 의사 결정 트리 알고리즘은 데이터 마이닝 분야 또는 기계 학습 시스템 분야에서 매우 유용하게 사용된다. 왜냐하면 빠르고 정확하게 정보를 분류하여 좋은 결과를 도출하기 때문이다. 하지만 때때로 의사 결정 트리가 매우 작은 데이터나 노이즈 데이터로 구성된 리프 노드들로 인해 좋은 정보를 제공하지 못하는 경우가 있다. 이 논문은 이러한 분류 문제를 해결하기 위해 분류기, UChoo를 사용할 것이고 노이즈 또는 노이즈 형태로 보이는 리프들을 제외하고 오직 중요한 리프들만을 검사하는 효과적인 방법을 제안한다. 그리고 실험을 통하여 의사 결정시 오직 중요한 리프들만을 의사 결정 트리에서 선택함으로써 효과적으로 에러가 줄어드는 것을 보일 것이다.

음성 검출 기반의 저연산 이득 제어 알고리즘 (A Gain Control Algorithm of Low Computational Complexity based on Voice Activity Detection)

  • 김상균;조우형;정민아;권장우;이상민
    • 한국통신학회논문지
    • /
    • 제40권5호
    • /
    • pp.924-930
    • /
    • 2015
  • 본 논문에서는 잡음 환경에서 적은 연산량으로 소형 음향기기의 음질 향상을 위한 새로운 저연산 이득 제어 알고리즘을 제안한다. 대표적인 소형 음향기기인 보청기의 이득 제어 알고리즘은 입력 신호를 잡음 제거 한 후 이 신호의 파워를 기준으로 광역동범위압축 (wide dynamic range compression, WDRC)을 하기 때문에 불필요한 신호까지 증폭된다. 제안된 이득 제어 알고리즘은 음성 검출기 (voice activity detection, VAD)의 결과를 이용하여 음성의 존재 유/무에 따라 적응적으로 이득을 제어한다. 성능 평가를 위해 제안된 알고리즘은 VAD를 적용하지 않은 알고리즘과 정상 및 비정상 잡음환경에서 다양한 조건을 부과하여 비교하였으며, 실험결과 제안된 알고리즘이 전체 성능 및 잡음 구간에서 향상된 결과를 보였다.

정규화된 오차신호 전력을 이용한 동시통화 검출기의 성능 개선 (Performance Improvement of Double-talk Detector Using Normalized Error Signal Power)

  • 허원철;배건성
    • 한국통신학회논문지
    • /
    • 제32권5C호
    • /
    • pp.478-486
    • /
    • 2007
  • 음향 반향제거기에서의 동시통화 검출 오류는 근단화자의 음성신호를 왜곡시키거나 반향제거 성능을 저하시킬 수 있다. 따라서 정확한 동시통화 구간의 검출은 음향 반향제거기의 성능을 결정짓는 중요한 요소 중의 하나이다. 기존의 상호상관계수를 이용한 동시통화 검출 알고리듬은 적응필터의 초기 수렴구간과 배경잡음이 많은 환경에서는 근단화자의 음성신호가 존재하지 않더라도 상호상관계수 값이 증가하여 동시통화 검출 오류가 자주 발생할 수 있다. 본 논문에서는 기존의 상호상관계수를 이용한 동시통화 검출 알고리듬의 문제점을 해결하기 위해 상호상관계수와 더불어 단일통화 구간에서의 적응필터의 정규화된 오차신호 전력을 이용하여 동시통화를 검출하는 알고리듬을 제안한다. 실험 결과, 제안한 동시통화 검출 알고리듬은 잡음환경에 강인할 뿐만 아니라 음향 반향제거기의 성능을 향상시킬 수 있음을 확인하였다.

경계범주 자동탐색에 의한 확장된 학습체계 구성방법 (Construction Scheme of Training Data using Automated Exploring of Boundary Categories)

  • 최윤정;지정규;박승수
    • 정보처리학회논문지B
    • /
    • 제16B권6호
    • /
    • pp.479-488
    • /
    • 2009
  • 본 논문은 기존의 목표항목만을 위주로 한 학습체계에서 발생하는 오분류 문제의 해결을 위해 기존의 학습체계에 경계항목을 자동으로 탐 색하여 포함시켜 확대시키는 방법을 제안하고 있다. 여러 주제에 걸쳐 다양한 내용을 다루는 복잡한 문서들은 확실히 어느 범주로 분류해야 할 지 판가름하기 어려운 성질인 모호성이 강하다. 이러한 경우 모든 경우들을 정확히 구분할 수 있는 최적의 경계를 찾는 일은 더욱 어려운 일이 다. 복잡하고 불확실성이 높은 데이터들의 특징은 대부분 분류 경계영역에 위치하므로 이러한 분류경계의 데이터들을 새로운 학습 항목으로 인 식시키도록 하는 것이 필요하다. 본 연구에서는 주어진 목표항목 사이의 경계항목을 자동으로 탐색하여 학습체계에 추가하는 학습 체계 확장 알고리즘을 제시하고, 의도적인 학습오류를 발생시킨 후 기존방법과의 비교실험을 수행함으로써 제안방법의 정확성과 안정성을 비교하였다. 실 험결과 경계범주를 포함하여 학습 체계를 확장시켰을 때의 예측력은 기존 0.70에서 0.86으로 약 24% 향상 되었고, 오류를 포함시켰을 때의 예 측력은 기존 0.52에서 0.79로 약 49% 향상되었다.