In this paper, we propose two effective energy feature normalization methods for robust speech recognition in noisy environments. In the first method, we estimate the noise energy and remove it from the noisy speech energy. In the second method, we propose a modified algorithm for the Log-energy Dynamic Range Normalization (ERN) method. In the ERN method, the log energy of the training data in a clean environment is transformed into the log energy in noisy environments. If the minimum log energy of the test data is outside of a pre-defined range, the log energy of the test data is also transformed. Since the ERN method has several weaknesses, we propose a modified transform scheme designed to reduce the residual mismatch that it produces. In the evaluation conducted on the Aurora2.0 database, we obtained a significant performance improvement.
An expectation-maximization (EM) based Bayesian adaptation method for the mean of noise is proposed for noise-robust speech recognition. In the algorithm, the on-line testing utterances are used for the unsupervised Bayesian adaptation and the prior distribution of the noise mean is estimated using the off-line training data. For the noisy speech modeling, the parallel model combination (PMC) method is employed. The proposed method has shown to be effective compared with the conventional PMC method for the speech recognition experiments in a car-noise condition.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.738-741
/
2009
This research is concerned for improving the result of speech recognition under the noisy speech. We knew that spectral subtraction and recovery of valleys in spectral envelope obtained from noisy speech are more effective for the improvement of the recognition. In this research, the averaged spectral envelope obtained from vowel spectrums are used for the emphasis of valleys. The vocalic spectral information at lower frequency range is emphasized and the spectrum obtained from consonants is not changed. In simulation, the emphasis coefficients are varied on cepstral domain. This method is used for the recognition of noisy digits and is improved.
There have been many research efforts to improve the performance of the speech recognizer in noisy conditions. Among them, the model compensation method and the speech enhancement approach have been used widely. In this paper, we propose to combine the two different approaches to further enhance the recognition rates in the noisy speech recognition. For the speech enhancement, the minimum mean square error-short time spectral amplitude (MMSE-STSA) has been adopted and the parallel model combination (PMC) and Jacobian adaptation (JA) have been used as the model compensation approaches. From the experimental results, we could find that the hybrid approach that applies the model compensation methods to the enhanced speech produce better results than just using only one of the two approaches.
This paper proposed variable threshold dual rate ADPCM coding method which is modified from the standard ADPCM of ITU G.726 for speech quality improvement. The speech quality of variable threshold dual rate ADPCM is better than single rate ADPCM at noisy environment without increasing the complexity by using ZCR(Zero Crossing Rate). In this case, ZCR is used to divide input signal samples into two categories(noisy & speech). The samples with higher ZCR is categorized as the noisy region and the samples with lower ZCR is categorized as the speech region. Noisy region uses higher threshold value to be compressed by 16Kbps for reduced bit rates and the speech region uses lower threshold value to be compressed by 40Kbps for improved speech quality. Comparing with the conventional ADPCM, which adapts the fixed coding rate. the proposed variable threshold dual rate ADPCM coding method improves noise character without increasing the bit rate. For real time applications, ZCR calculation was considered as a simple method to obtain the background noise information for preprocess of speech analysis such as FFT and the experiment showed that the simple calculation of ZCR can be used without complexity increase. Dual rate ADPCM can decrease the amount of transferred data efficiently without increasing complexity nor reducing speech quality. Therefore result of this paper can be applied for real-time speech application such as the internet phone or VoIP.
The speech recognizer in general operates in noisy acoustical environments. Many research works have been done to cope with the acoustical variations. Among them, the multiple-HMM model approach seems to be quite effective compared with the conventional methods. In this paper, we consider a multiple-model approach combined with the model compensation method and investigate the necessary number of the HMM model sets through noisy speech recognition experiments. By using the data-driven Jacobian adaptation for the model compensation, the multiple-model approach with only a few model sets for each noise type could achieve comparable results with the re-training method.
A noise suppression algorithm is proposed for nonstationary noisy environments. The proposed algorithm is different from the conventional approaches such as the spectral subtraction algorithm and the minimum statistics noise estimation algorithm in that it classifies speech and noise signals in time-frequency bins. It calculates the ratio of the variance of the noisy power spectrum in time-frequency bins to its normalized time-frequency average. If the ratio is greater than an adaptive threshold, speech is considered to be present. Our adaptive algorithm tracks the threshold and controls the trade-off between residual noise and distortion. The estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the advantages of simplicity and light computational load for estimating the noise. This algorithm reduces the residual noise significantly, and is superior to the conventional methods.
Multiple-model speech recognizer has been shown to be quite successful in noisy speech recognition. However, its performance has usually been tested using the general speech front-ends which do not incorporate any noise adaptive algorithms. For the accurate evaluation of the effectiveness of the multiple-model frame in noisy speech recognition, we used the state-of-the-art front-ends and compared its performance with the well-known multi-style training method. In addition, we improved the multiple-model speech recognizer by employing N-best reference HMMs for interpolation and using multiple SNR levels for training each of the reference HMM.
In this paper, we proposed an efficient method that estimates the HMM (Hidden Marke Model) parameters of the noisy speech. In previous methods, noisy speech HMM parameters are usually obtained by analytical methods using the assumed noise statistics. However, as they assume some simplication in the methods, it is difficult to come closely to the real statistics for the noisy speech. Instead of using the simplication, we used some useful statistics from the clean speech HMMs and employed the deterministic noise model. We could find that the new scheme showed improved results with reduced computation cost.
Kim, Byoung-Don;Song, Min-Gyu;Choi, Seung-Ho;Kim, Jin-Young
Speech Sciences
/
v.15
no.4
/
pp.85-96
/
2008
Automatic speech recognition has severe performance degradation under noisy environments. To cope with the noise problem, many methods have been proposed. Most of them focused on noise-robust features or model adaptation. However, researchers have overlooked utterance verification (UV) under noisy environments. In this paper we discuss UV problems based on the normalized confidence measure. First, we show that UV performance is also degraded in noisy environments with the experiments of an isolated word recognition. Then we observe how the degradation of UV performances is suffered. Based on the UV experiments we propose a modeling method of the statistics of phone confidences using sigmoid functions. For obtaining the parameters of the sigmoidal models, the particle swarm optimization (PSO) is adopted. The proposed method improves 20% rejection performance. Our experimental results show that the PSO-NCM can apply noise speech recognition successfully.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.