• Title/Summary/Keyword: Noise temperature

Search Result 1,018, Processing Time 0.025 seconds

The Effect of Temperature on the Tire-Pavement Noise (온도가 타이어 소음에 미치는 영향)

  • Yeo, Woon-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.576-580
    • /
    • 2000
  • Tire-pavement noise is a significant portion of noise coming from road vehicles and is therefore a logical focus of efforts to reduce overall traffic noise. A small but significant reduction of noise level with positive temperature increases was observed for some tires. The reduction was evident in two of the tires at 53 km/h and five of the tires at 80 km/h. The temperature gradient of the different tires at 80 km/h range from -0.07 to +0.01 dB/$^{\circ}C$. Frequency analysis of the tire noise identified that noise content in the range of 1,300 to 1,900 Hz is particularly sensitive to temperature changes.

  • PDF

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

Driving Method for Mis-discharge Improvement at Low Temperature in AC PDP (AC PDP의 저온에서의 오방전 개선을 위한 구동 방법)

  • Kim, Gun-Su;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1157-1165
    • /
    • 2009
  • In AC-PDP, it is necessary to achieve high luminance efficiency, high luminance and high definition by adopting technologies such as high xenon concentration, MgO doping, and long gap. However, it is very difficult to apply above technologies because they make the driving voltage margin reduced. Especially, high Xe concentration technology for high efficacy makes not only the driving voltage margin reduced but also the stability of reset discharge decreased at low temperature. In this paper, we studied temperature and voltage dependent stability of reset discharge and present the experimental results of the discharge characteristics at low temperature. In addition, we suggested the mechanism of bright noise and black noise at low temperature. Finally, we proposed double reset waveform to improve the bright noise and descending scan time method to improve the black noise.

An Experimental Study on Annulus Muffler of Automobile (자동차용 환상형 소음기에 관한 실험적 연구)

  • Kim, Byoung-Sam;Song, Kyu-Keun;Sim, Sang-Cherl;Cheong, Byeong-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

Temperature Gradient for Tire Pavement Noise Measurement

  • Yeo, Woon-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1E
    • /
    • pp.3-6
    • /
    • 2001
  • Sound pressure level (SPL) measurements were performed on a controlled test track vehicle coast-by runs of a passenger vehicle with six different sets of tires across a range of temperatures. A small but significant reduction of noise level with positive temperature increases was observed for some tires. The temperature gradient of the different tires at 80㎞/h ranged from -0.07 to + 0.01 dB/℃. Frequency analysis of the tire noise identified that noise content in the range of 1,300 to 1,900Hz was particularly sensitive to temperature changes. Differences in SPL due to speed and tire type were much greater than that due to temperature.

  • PDF

Uncertainty evaluation in electrochemical noise resistance measurement (전기화학적 노이즈 저항 측정에서의 불확도 평가)

  • Kim, Jong Jip;Kang, Su Yeon
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.220-226
    • /
    • 2013
  • The uncertainty in statistical noise resistance measurement was evaluated for a type 316 stainless steel in NaCl solutions at room temperature. Sensitivity coefficients were determined for measurands or variables such as NaCl concentration, pH, solution temperature, surface roughness, inert gas flow rate and bias potential amplitude. The coefficients were larger for the variables such as NaCl concentration, pH, inert gas flow rate and solution temperature, and they were the major factors increasing the combined standard uncertainty of noise resistance. However, the contribution to the uncertainty in noise resistance measurement from the above variables was remarkably low compared to that from repeated measurements of noise resistance, and thus, it is difficult to lower the uncertainty in noise resistance measurement significantly by lowering the uncertainties related with NaCl concentration, pH, inert gas flow rate and solution temperature. In addition, the uncertainty in noise resistance measurement was high amounting to 17.3 % of the mean, indicating that the reliability in measurement of noise resistance is low.

Prediction of Fracture Appearance Transition Temperature(FATT) to Steel by Ultrasonic and Barkhausen Noise Method (초음파와 Barkhausen Noise에 의한 강의 연.취성천이온도 예측)

  • Nam, Young-Hyun;Seong, Un-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1215-1222
    • /
    • 1999
  • It is advantageous to use an NDE method to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the material/component. This paper shows that the ultrasonic and the Barkhausen noise(BHN) methods can be used to accurately characterize forged reactor vessels. The attenuation coefficient of the ultrasonic wave was changed with heat treatment temperature and condition[as-quenched, tempered, PWHT]. The RMS[root mean square] voltage of Barkhausen noise depended on heat treatment temperature and conditions. The fracture appearance transition temperature(FATT) can be predicted using nondestructive evaluation methods.

The Study Of Sequence Control for LED (LED 조명 발열의 순차 제어시스템 연구)

  • Choi, Hyeung-Sik;Yoon, Jong-Su;Shin, Hee-Young;Lim, Tae-Woo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.99-100
    • /
    • 2011
  • In this paper, a temperature control for LED(Light Emitting Diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. Also, for minimization study of sound noise and temperature control of an LED lamp, a sequential control algorithm using the cooling fan at the lowest sound noise is presented. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan was performed.

  • PDF

Temperature and Sound Noise Control for LED lamp (LED조명의 온도 및 소음 제어)

  • Yoon, Jong-Su;Choi, Hyeung-Sik;Shin, Hee-Young;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1078-1084
    • /
    • 2011
  • In this paper, a temperature control for LED(Light Emitting Diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. Also, for minimization study of sound noise and temperature control of an LED lamp, a sequential control algorithm using the cooling fan at the lowest sound noise is presented. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan was performed.

Improvement of Gear Rattle Noise of a Small Car by Experimental Approach (시험적 방법에 의한 경승용차 기어 래틀 소음 개선)

  • 조영호;김인동;이병로;이학철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.628-632
    • /
    • 2001
  • Experimental approach was investigated to improve gear rattle noise of a small car. During the development of a small car serious problem occurred inside the transmission gear units. The transmission was a carried over system from a less powered predecessor. Several components of suspicion were investigated, and applied to reduce rattle noise. In general, backlash, the assembly gaps, and the clutch disk rattle induce gear rattle noise. Above mentioned improvements were applied to reduce the noise, but still problem remained. Meanwhile, the temperature inside the gearbox was reported to be unusually high and the life of transmission oil quality deteriorated drastically, Temperature increment caused the large gap between the bearing outer diameter and the transmission housing. Large gap made the gear shaft assembly move intermittently and impact each other. The tighter control of the assembly gap allowed the rotating shafts smoothly and reduced the gear rattle noise even in the high temperature range.

  • PDF