• 제목/요약/키워드: Noise remove

검색결과 764건 처리시간 0.03초

히스 노이즈제거를 통한 아날로그의 디지털 복원에 대한 연구 - X-NOISE를 활용한 히스 노이즈리덕션을 중심으로 - (A Research on the Digital Restoration of the Analog by Removing Hiss Noise (Using X-NOISE Based on Hiss-Noise Reduction))

  • 변정민;두일철
    • 디지털산업정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.161-170
    • /
    • 2014
  • Analog cassette tapes are easily changed due to environmental factors. To digitize is the best way to preserve a sound source. The way to digitize is to deal with the original sound to be enhanced to a variety of sources by playing through the audio card after recording. In this process to occur, it's the most important to remove various noise and equalizing sound in a method for preserving. It's studied about how to remove noise by using one of softwares, Cubase 5. 5, to remove hiss noise, which happens changing analog tape into digitalization. A amount of hiss noise is reduced to use X-Noise software of Wave which uses in Cubase 5.0, one of PLUG-IN. The noise is removed changing value of threshold and reduction every 10 times in no change of origin sound. To keep regular condition, the experiment to remove the hiss noise is conducted based on sound meondle, which is one of sound Nonmaegi. The noise is removed easily when the value of threshold is getting high in spite of giving a little value of reduction. However, as it gives a amount of reduction high, the damage rate of the sound source gets high.

웨이브렛과 원소 편차 기반의 중간값 필터를 이용한 잡음제거 알고리즘 (Denoising Algorithm using Wavelet and Element Deviation-based Median Filter)

  • 배상범;김남호
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2798-2804
    • /
    • 2010
  • 음성 및 영상신호는 신호를 처리하는 과정에서 다양한 잡음에 의해 훼손되어지며, 이러한 신호를 복원하기 위한 많은 연구가 이루어지고 있다. 본 논문에서는 음성신호와 같은 1차원 신호에 복합적으로 중첩된 가우시안 잡음과 임펄스 잡음을 제거하기 위한 알고리즘을 제안하였다. 알고리즘은 임펄스 잡음을 제거한 후, 가우시안 잡음을 제거 하도록 구성되어져 있으며, 가우시안 잡음을 제거하기 위해 웨이브렛 계수 누적을 이용하였고, 임펄스 잡음을 제거하기 위해 원소 편차에 기반한 중간값 필터를 적용하였다. 그리고 개선 효과의 판단 기준으로 SNR을 사용하였으며, 객관적인 판단을 위해 기존의 방법들과 비교하였다.

A Study on an Image Restoration Algorithm in Universal Noise Environments

  • Jin, Bo;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제6권1호
    • /
    • pp.80-85
    • /
    • 2008
  • Images are often corrupted by noises during signal acquisition and transmission. Among those noises, additive white Gaussian noise (AWGN) and impulse noise are most representative. For different types of noise have different characters, how to remove them separately from degraded image is one of the most fundamental problems. Thus, a modified image restoration algorithm is proposed in this paper, which can not only remove impulse noise of random values, but also remove the AWGN selectively. The noise detection step is by calculating the intensity difference and the spatial distance between pixels in a mask. To divide two different noises, the method is based on three weighted parameters. And the weighted parameters in the filtering mask depend on spatial distances, positions of impulse noise and standard deviation of AWGN. We also use the peak signal-to-noise ratio (PSNR) to evaluate restoration performance, and simulation results demonstrate that the proposed method performs better than conventional median-type filters, in preserving edge details.

전자 현미경 영상의 혼합 잡음제거 알고리즘에 관한 연구 (Design of mixed noise reduction algorithm for SEM image)

  • 최재혁;박선우
    • 한국진공학회지
    • /
    • 제8권3B호
    • /
    • pp.315-321
    • /
    • 1999
  • In this paper, the SEM image processing system based on PC is designed, and a new noise reduction filtering algorithm is proposed. The SEM image obtained in semiconductor processing line is sensitive to noise, the weighted-D filter can remove uniform and Gaussian noise effectively, but can not remove impulse noise properly, A new improved filtering algorithm is proposed to reduce mixed-noise. The performance of the proposed filter is quantitatively evaluated by use of the normalized mean square errors (NMSE). The experimental results show that the performance of the proposed filter is obtained between 0.96 and 2.5 times better than that of weighted-D filter in NMSE evaluation.

  • PDF

거리영상 개선을 위한 정칙화 기반 표면 평활화기술 (Regularized Surface Smoothing for Enhancement of Range Data)

  • 기현종;신정호;백준기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1903-1906
    • /
    • 2003
  • This paper proposes an adaptive regularized noise smoothing algorithm for range image using the area decreasing flow method, which can preserve meaningful edges during the smoothing process. Although the area decreasing flow method can easily smooth Gaussian noise, it has two problems; ⅰ) it is not easy to remove impulsive noise from observed range data, and ⅱ) it is also difficult to remove noise near edge when the adaptive regularization is used. In the paper, therefore, the second smoothness constraint is addtionally incorporated into the existing regularization algorithm, which minimizes the difference between the median filtered data and the estimated data. As a result, the Proposed algorithm can effectively remove the noise of dense range data with edge preserving.

  • PDF

A Study on Image Restoration Algorithm in Random-Valued Impulse Noise Environment

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제9권3호
    • /
    • pp.331-335
    • /
    • 2011
  • Digital images are often corrupted by impulse noise, and it is very important to remove random-valued impulse noise. Cleaning such noise is far more difficult than cleaning salt and pepper impulse noise. In this paper, we proposed an efficient way to remove random-valued impulse noise from digital images. This novel method comprises two stages. The first stage is to detect the random-valued impulse noise in the image and the pixels are roughly divided into two classes, which are "noise-free pixel" and "noise pixel". Then, the second stage is to eliminate the random-valued impulse noise from the image. In this stage, only the "noise pixels" are processed. The "noise-free pixels" are copied directly to the output image. Simulation results indicated that our method provides a significant improvement over many other existing algorithms.

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

웨이블릿 계수를 이용한 디지털영상에서의 잡음제거 (Noise Reduction of Digital Image Using Wavelet Coefficient)

  • 남현주;최승권;신승수;조용환
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 춘계종합학술대회논문집
    • /
    • pp.376-382
    • /
    • 2003
  • 최근에, 신호와 영상 데이터에서의 잡음을 제거하기 위한 다양한 형태의 웨이블릿 변환 기법들이 나왔다. 원래 영상에서 잡음을 분리시키는 방법을 이용함으로써, 웨이블릿 변환은 영상의 모서리 요소를 유지할 수 있다. 이런 웨이블릿 분석은 기저 함수가 웨이블릿으로 코드화 될 때 완전하게 이루어진다. 본 논문에서는 영상 신호로부터 잡음을 제거하기 위해 웨이블릿 변환을 사용하는 방법을 제안한다. Donoho 와 Johnstone 에 의해 제안된 웨이블릿 변환 방법이 있지만, 그 변환 방법은 영상의 모든 잡음을 제거할 만큼의 신뢰성이 없다. 이에 본 논문에서는 잡음의 대역폭과 진폭의 형태에 맞는 웨이블릿의 축소량과 경계치에 대한 하나의 알고리즘을 제시하고자 한다.

  • PDF

프레임 단위의 AELMS를 이용한 잡음 제거 알고리즘 (Noise Reduction Algorithm using Average Estimator Least Mean Square Filter of Frame Basis)

  • 안찬식;최기호
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.135-140
    • /
    • 2013
  • 잡음 추정과 검출 알고리즘에서는 LMS Filter를 이용하여 변화하는 잡음 환경에 빠르게 적응할 수 있도록 한다. 하지만 LMS Filter는 잡음 추정을 위한 일정 시간 동안 적응 시간이 필요하며 신호의 변화가 일어날 경우 더 많은 적응 시간이 소요되는 단점을 가지고 있다. 따라서 이를 보완하기 위하여 프레임 단위의 AELMS Filter를 이용한 잡음 제거 방법을 제안한다. 본 논문은 잡음 환경에서 입력되는 신호를 프레임 단위로 분할하고 평균과 분산을 이용한 예측 LMS Filter를 구성하여 잡음을 제거하므로 잡음 환경이 변화하더라도 빠른 적응 시간으로 잡음을 제거한다. 또한 환경 잡음과 음성 신호가 혼합되어 입력될 때 잡음을 제거하여 음성의 고유 특성을 유지하고 음성 정보 손상을 줄이기 위한 방법이다. 프레임 단위의 AELMS Filter를 이용한 잡음 제거 방법으로 잡음 제거 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 감쇠도가 평균 6.8dB 향상되었다.

웨이브렛 상세 영역 변환을 이용한 임펄스 잡음 제거 (A study on removing the impulse noise using wavelet transformation in detail areas)

  • 차성원;신재호
    • 디지털산업정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.75-80
    • /
    • 2008
  • The impulse noise is very common and typical noise in the digital image. Many methods are invented in order to remove the impulse noise since the development of Digital Image Processing. For example, the median filter has been used for removing the impulse noise. In this paper, we try to remove the impulse noise using wavelet transformation in the wavelet-transformed detail areas. We also compare the algorithm with median filter with the visual and numerical methods. The result using the algorithm in this paper was much better than the median filter in both removing the noise and keeping the edges. The proposed algorithm needs more calculating time but has more advantages than the median filter has.