• Title/Summary/Keyword: Noise remove

Search Result 764, Processing Time 0.022 seconds

A Research on the Digital Restoration of the Analog by Removing Hiss Noise (Using X-NOISE Based on Hiss-Noise Reduction) (히스 노이즈제거를 통한 아날로그의 디지털 복원에 대한 연구 - X-NOISE를 활용한 히스 노이즈리덕션을 중심으로 -)

  • Byun, Jung Min;Doo, Ill Chul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Analog cassette tapes are easily changed due to environmental factors. To digitize is the best way to preserve a sound source. The way to digitize is to deal with the original sound to be enhanced to a variety of sources by playing through the audio card after recording. In this process to occur, it's the most important to remove various noise and equalizing sound in a method for preserving. It's studied about how to remove noise by using one of softwares, Cubase 5. 5, to remove hiss noise, which happens changing analog tape into digitalization. A amount of hiss noise is reduced to use X-Noise software of Wave which uses in Cubase 5.0, one of PLUG-IN. The noise is removed changing value of threshold and reduction every 10 times in no change of origin sound. To keep regular condition, the experiment to remove the hiss noise is conducted based on sound meondle, which is one of sound Nonmaegi. The noise is removed easily when the value of threshold is getting high in spite of giving a little value of reduction. However, as it gives a amount of reduction high, the damage rate of the sound source gets high.

Denoising Algorithm using Wavelet and Element Deviation-based Median Filter (웨이브렛과 원소 편차 기반의 중간값 필터를 이용한 잡음제거 알고리즘)

  • Bae, Sang-Bum;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2798-2804
    • /
    • 2010
  • The audio and image signal are corrupted by various noises in signal processing, many studies are being accomplished to restore those signals. In this paper, the algorithm is proposed to remove additive Gaussian noise and impulse noise at one dimension signal like an speech signal. The algorithm is composed to remove Gaussian noise after removing impulse noise. And the method using wavelet coefficient accumulation is used to remove the Gaussian noise, and the median filter based on element deviation is applied to remove the impulse noise. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.

A Study on an Image Restoration Algorithm in Universal Noise Environments

  • Jin, Bo;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.80-85
    • /
    • 2008
  • Images are often corrupted by noises during signal acquisition and transmission. Among those noises, additive white Gaussian noise (AWGN) and impulse noise are most representative. For different types of noise have different characters, how to remove them separately from degraded image is one of the most fundamental problems. Thus, a modified image restoration algorithm is proposed in this paper, which can not only remove impulse noise of random values, but also remove the AWGN selectively. The noise detection step is by calculating the intensity difference and the spatial distance between pixels in a mask. To divide two different noises, the method is based on three weighted parameters. And the weighted parameters in the filtering mask depend on spatial distances, positions of impulse noise and standard deviation of AWGN. We also use the peak signal-to-noise ratio (PSNR) to evaluate restoration performance, and simulation results demonstrate that the proposed method performs better than conventional median-type filters, in preserving edge details.

Design of mixed noise reduction algorithm for SEM image (전자 현미경 영상의 혼합 잡음제거 알고리즘에 관한 연구)

  • 최재혁;박선우
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.315-321
    • /
    • 1999
  • In this paper, the SEM image processing system based on PC is designed, and a new noise reduction filtering algorithm is proposed. The SEM image obtained in semiconductor processing line is sensitive to noise, the weighted-D filter can remove uniform and Gaussian noise effectively, but can not remove impulse noise properly, A new improved filtering algorithm is proposed to reduce mixed-noise. The performance of the proposed filter is quantitatively evaluated by use of the normalized mean square errors (NMSE). The experimental results show that the performance of the proposed filter is obtained between 0.96 and 2.5 times better than that of weighted-D filter in NMSE evaluation.

  • PDF

Regularized Surface Smoothing for Enhancement of Range Data (거리영상 개선을 위한 정칙화 기반 표면 평활화기술)

  • 기현종;신정호;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1903-1906
    • /
    • 2003
  • This paper proposes an adaptive regularized noise smoothing algorithm for range image using the area decreasing flow method, which can preserve meaningful edges during the smoothing process. Although the area decreasing flow method can easily smooth Gaussian noise, it has two problems; ⅰ) it is not easy to remove impulsive noise from observed range data, and ⅱ) it is also difficult to remove noise near edge when the adaptive regularization is used. In the paper, therefore, the second smoothness constraint is addtionally incorporated into the existing regularization algorithm, which minimizes the difference between the median filtered data and the estimated data. As a result, the Proposed algorithm can effectively remove the noise of dense range data with edge preserving.

  • PDF

A Study on Image Restoration Algorithm in Random-Valued Impulse Noise Environment

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.331-335
    • /
    • 2011
  • Digital images are often corrupted by impulse noise, and it is very important to remove random-valued impulse noise. Cleaning such noise is far more difficult than cleaning salt and pepper impulse noise. In this paper, we proposed an efficient way to remove random-valued impulse noise from digital images. This novel method comprises two stages. The first stage is to detect the random-valued impulse noise in the image and the pixels are roughly divided into two classes, which are "noise-free pixel" and "noise pixel". Then, the second stage is to eliminate the random-valued impulse noise from the image. In this stage, only the "noise pixels" are processed. The "noise-free pixels" are copied directly to the output image. Simulation results indicated that our method provides a significant improvement over many other existing algorithms.

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

Noise Reduction of Digital Image Using Wavelet Coefficient (웨이블릿 계수를 이용한 디지털영상에서의 잡음제거)

  • 남현주;최승권;신승수;조용환
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.376-382
    • /
    • 2003
  • Recently, there have been many types of wavelet transformations proposed to remove the noise from an signal and image data By using feature of seperating the noise from the original image the Wavelet transformations can retain the edges of the images The wavelet analysis is complete when the basis function is coded into the wavelet This Thesis describes a method of using wavelet transformation to remove the noise from an image signal. Although the wavelet transformation proposed by Donoho and Johnstone works, it does not reliably remove all the noise from the images. So this thesis propose an algorithm that selected Wavelet Shrinkgae and threshold according to the features of bands and amplitude of noise.

  • PDF

Noise Reduction Algorithm using Average Estimator Least Mean Square Filter of Frame Basis (프레임 단위의 AELMS를 이용한 잡음 제거 알고리즘)

  • Ahn, Chan-Shik;Choi, Ki-Ho
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.135-140
    • /
    • 2013
  • Noise estimation and detection algorithm to adapt quickly to changing noise environment using the LMS Filter. However, the LMS Filter for noise estimation for a certain period of time and need time to adapt. If the signal changes occur, have the disadvantage of being more adaptive time-consuming. Therefore, noise removal method is proposed to a frame basis AELMS Filter to compensate. In this paper, we split the input signal on a frame basis in noisy environments. Remove the LMS Filter by configuring noise predictions using the mean and variance. Noise, even if the environment changes fast adaptation time to remove the noise. Remove noise and environmental noise and speech input signal is mixed to maintain the unique characteristics of the voice is a way to reduce the damage of voice information. Noise removal method using a frame basis AELMS Filter To evaluate the performance of the noise removal. Experimental results, the attenuation obtained by removing the noise of the changing environment was improved by an average of 6.8dB.

A study on removing the impulse noise using wavelet transformation in detail areas (웨이브렛 상세 영역 변환을 이용한 임펄스 잡음 제거)

  • Cha, Seong-Won;Shin, Jae-Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • The impulse noise is very common and typical noise in the digital image. Many methods are invented in order to remove the impulse noise since the development of Digital Image Processing. For example, the median filter has been used for removing the impulse noise. In this paper, we try to remove the impulse noise using wavelet transformation in the wavelet-transformed detail areas. We also compare the algorithm with median filter with the visual and numerical methods. The result using the algorithm in this paper was much better than the median filter in both removing the noise and keeping the edges. The proposed algorithm needs more calculating time but has more advantages than the median filter has.