• Title/Summary/Keyword: Noise prediction method

Search Result 648, Processing Time 0.029 seconds

Analysis of FE/test result for con011ing the squeal noise of wheel brake system (휠제동장치의 스퀼소음 제어를 위한 해석결과 분석)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.595-600
    • /
    • 2009
  • Passengers in a vehicle feel uncomfortable due to squeal noise. Squeal noise, a kind of self-excited vibration, is generated by the friction force between the disc and the pad of the automobile. In this paper, modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. Finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM. The complex eigenvalue analysis results compared with braking test. The analysis results show good correlation with braking test for the squeal frequency at an unstable mode.

  • PDF

Aerodynamic Noise Prediction of Automobile Engine Cooling Fan Noise (자동차 엔진 냉각홴의 공력 소음 예측에 관한 연구)

  • Lee, Jeonghan;Cho, Kyungseok;Sun, Hyosung;Shin, Hyungki;Lee, Soogab
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.115-120
    • /
    • 1998
  • Aerodynamic noise generated by automobile cooling fan is investigated. Automobile cooling fans radiate both discrete frequency noise as well as broadband noise. In the present work, the former is considered through free-wake panel method coupled with acoustic analogy fully considering the retarded time variation on the blade surface, while the latter is taken into account by three well-established broadband noise components. Experiments were performed to supplement necessary inputs as well as to provide the final comparison with the predicted noise spectrum. The predicted noise levels at blade passing frequencies agree well with the experimental data for the first few harmonics. Although the predicted broadband noise levels at higher frequencies fall below the experimental data due to the fundamental shortcomings of the utilized formulations, the analysis offers a detailed physical understanding of the fan noise generation processes.

  • PDF

Environmental Noise Prediction for Large Power Plant and Desalination Plant (대형 발전/담수 플랜트의 환경소음 해석 및 평가)

  • Song, Keun-Bok;Kim, Dong-Hae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.345-349
    • /
    • 2008
  • In this paper, environmental noise analysis was performed for large power plant and desalination plant. Ray tracing method was used to predict inside noise of turbine building. It is important to design the plant with the allowable noise level. To improve the accuracy, main noise sources were estimated based on the field data. As the results of analysis, it was concluded that noise levels slightly exceed the specified noise limit in turbine building inside. In order to reduce the noise level, adding sound-absorbing materials to inside wall of turbine building was suggested and verified with the confirmed analysis model.

  • PDF

IMM Algorithm with NPHMM for Speech Enhancement (음성 향상을 위한 NPHMM을 갖는 IMM 알고리즘)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • The nonlinear speech enhancement method with interactive parallel-extended Kalman filter is applied to speech contaminated by additive white noise. To represent the nonlinear and nonstationary nature of speech. we assume that speech is the output of a nonlinear prediction HMM (NPHMM) combining both neural network and HMM. The NPHMM is a nonlinear autoregressive process whose time-varying parameters are controlled by a hidden Markov chain. The simulation results shows that the proposed method offers better performance gains relative to the previous results [6] with slightly increased complexity.

  • PDF

A Hydrodynamic-Acoustic Splitting Method for Aeroacoustic Noise Prediction of Wall-bounded Shear Flow (벽면 전단 유동의 공력 소음 해석을 위한 유동-음향 분리 기법)

  • Seo, J.H.;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2060-2065
    • /
    • 2003
  • Aeolian tone generation from a two dimensional circular cylinder is numerically investigated via direct numerical simulation and hydrodynamic-acoustic splitting method. All governing equation are spatially discretized with the sixth-order compact scheme and fourth-order Runge-Kutta method to avoid excessive numerical dissipations and dispersions of acoustic quantities. Comparisons of two results show that the previous splitting method can not accurately predict the aeroacoustic noise of wall bounded shear flow. In this study, a perturbation viscous term and a new energy equation have been developed. This modified splitting method accurately predicts aeroacoustic noise from wall-bounded shear flow. The present results agree very well with the direct numerical simulation solution.

  • PDF

Computational Analysis on the Noise Characteristics of Ship Large Duct (선박용 대형 덕트의 소음 특성 전산해석 연구)

  • Song, Jee-Hun;Hong, Suk-Yoon;Lee, Yi-Soo;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.751-758
    • /
    • 2015
  • Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994). However, the method is not suitable for large ducts in ships. In this paper, computational analysis methods are used to develop a noise prediction method for the large ducts in ships. To develop regression formula of attenuation of sound pressure level in large ducts, Boundary Element Method(BEM) is used. BEM and Computational Fluid Dynamics(CFD) are applied to the analysis of flow-induced noise in ducts with stiffeners inside. Loud noise above 100 dB can be generated in some cases. Breakout noises of large ducts are also analyzed by using BEM and Finite Element Method(FEM). The acoustic pressure level shows about 10-15dB difference between inside and outside of the duct. Utilizing the results of this study, it is expected that shipyard planners can predict noise of the HVAC system for ships.

Design of Muffler using Taguchi Method and Experimental Design (다구찌 방법과 실험계획법을 이용한 소음기의 설계 방법)

  • 오재응;차경준;이규태;진정언
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.121-129
    • /
    • 1999
  • Recently, the regulations from the govemment and the concems of the people give rise to the interest in exhaust noise of passenger car as much as other vehicles. The exact analysis of various mufflers is needed to reduce the level of exhaust noise. In this paper, we propose a design to improve the mufflers capacity by reducing noise of exhaust system combining Taguchi method and fractional factorial design. In order to measure the performance of a muffler, the performance prediction software which is developed by the Dept. of Automotive Engineering at Hanyang University is used. From the current muffler system we select control factors such as lenght and radius of each component that are thought to be effective on capacity of muffler. Factors are arranged using L18, L27 table of orthogonal array and the fractional factorial design for analysis. We find some significant interaction effects using 1/3 fractional factorial design and accomplish the reduction of noise from the muffler.

  • PDF

Analysis and extraction method of noise parameters for short channel MOSFET thermal noise modeling (단채널 MOSFET의 열잡음 모델링을 위한 잡음 파라메터의 분석과 추출방법)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2655-2661
    • /
    • 2009
  • In this paper, an accurate noise parameters for thermal noise modeling of short channel MOSFET is derived and extracted. Fukui model for calculating the noise parameters of a MOSFET is modified by considering effects of parasitic elements in short channel, and it is compared with conventional noise model equation. In addition, for obtaining the intrinsic noise sources of devices, noise parameters(minimum noise figure $F_{min}$, equivalent noise resistance $R_n$ optimized source admittance $Y_{opt}=G_{opt}+B_{opt}$) in submicron MOSFETs is extracted. With this extraction method, the intrinsic noise parameters of MOSFET without effects of probe pad and extrinsic parasitic elements from RF noise measurements can be directly obtained.

A Development of Prediction Program for Vertical Transfer Vibration of R/C Structure due to Traffic Loads (교통하중에 인접한 콘크리트 건축물의 진동예측 프로그램 개발)

  • Chun, Ho-Min;Hong, Kap-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.949-954
    • /
    • 2000
  • In terms of vibration damage and the serviceability for occupants in buildings, the purpose of vibration study lies in the reduction of vibration damage. However, only when vibration level of buildings is available, measures of vibration control and base isolation can be taken. The purpose of this paper is to provide a fundamental analysis method to estimate structural vibration. After analysing by using two methods, infinite model, combination method, a comparison between analysed results and the results of previous studies was performed to prove the validity of the prediction on the vibration of building structure. Thus, if the material property of soil and quantity of load sources are known before construction being started, the vibration level could be predicted by using these methods.

  • PDF

Analysis for Driving Shock Resistance of Military Vehicle (군용 차량 주행 내충격 분석)

  • Jeon, Jong-Ik;Lee, Jong-Hak;Jeong, Eui-Bong;Kang, Kwang-Hee;Choi, Ji-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.267-272
    • /
    • 2014
  • In this paper, we analyze the characteristics for the driving shock resistance of the military vehicle through the bump test. Prior to the experiment, theoretical analysis was performed by using the SRS(shock response spectrum) and VRS(vibration response spectrum) analysis method. And we estimated the characteristics for the driving shock resistance of the military vehicle. Bump test was performed using the acceleration sensor and the driving test at a different speed. We evaluated the characteristics for the driving shock resistance of the military vehicle based on the result. And predicted values were compared with the theoretical analysis. In addition, we evaluated the results of the theoretical prediction of the SRS and the VRS analysis. And we evaluate the suitability of the prediction method at military vehicle shock analysis.

  • PDF